Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 51P
A smoothly contoured nozzle, with outlet diameter d = 20 mm, is coupled to a straight pipe by means of flanges. Water flows in the pipe, of diameter D = 50mm, and the nozzle discharges to the atmosphere. For steady flow and neglecting the effects of viscosity, find the volume flow rate in the pipe corresponding to a calculated axial force of 45.5 N needed to keep the nozzle attached to the pipe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water is transported in a pipe, at an average
flow rate of Q = 50 L/s. Calculate the pressure
difference p between the 2 manometers. We
can assume that the energy losses by friction are
negligible, and that there are only singular
energy losses (be careful to identify ALL the
singularities). The pump adds an energy of HP =
10 m to the system.
"GATE VALVE"
P2
OUVERTURE COMPLÈTE
do = 150 mm
Q = 50 L/s
• 2)
2 m
Q = 50 L/s
COUDES À
POMPE
RAYONS COURTS
do = 150 mm
(Hp = 10 m)
The diameter of a pipe changes gradually from 75 mm at a point A, 6 m above datum, to 150 mm at B, 3 m above datum. The pressure at A is 103 kPa and the velocity of flow is 3.6 m/s. Neglecting losses, with the aid of a neat sketch, determine the pressure at B
h
T
D
ol
B
Bernoulli Equation: Water flows from a reservoir down a circular pipe of diameter D = 1
cm at the instant shown. The difference in height between the water's surface in the
reservoir and the pipe's outlet is h = 2 m. Assuming viscosity is negligible, calculate the
flow rate Q, in cm³/sec, at which water will exit the pipe at the instant shown.
Chapter 6 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 6 - An incompressible frictionless flow field is given...Ch. 6 - A velocity field in a fluid with density of 1000...Ch. 6 - The x component of velocity in an incompressible...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - The velocity field for a plane source located...Ch. 6 - In a two-dimensional frictionless, incompressible...Ch. 6 - Consider a two-dimensional incompressible flow...Ch. 6 - An incompressible liquid with a density of 900...Ch. 6 - Consider a flow of water in pipe. What is the...
Ch. 6 - The velocity field for a plane vortex sink is...Ch. 6 - An incompressible liquid with negligible viscosity...Ch. 6 - Consider water flowing in a circular section of a...Ch. 6 - Consider a tornado as air moving in a circular...Ch. 6 - A nozzle for an incompressible, inviscid fluid of...Ch. 6 - A diffuser for an incompressible, inviscid fluid...Ch. 6 - A liquid layer separates two plane surfaces as...Ch. 6 - Consider Problem 6.15 with the nozzle directed...Ch. 6 - Consider Problem 6.16 with the diffuser directed...Ch. 6 - A rectangular computer chip floats on a thin layer...Ch. 6 - Heavy weights can be moved with relative ease on...Ch. 6 - The y component of velocity in a two-dimensional...Ch. 6 - The velocity field for a plane doublet is given in...Ch. 6 - Tomodel the velocity distribution in the curved...Ch. 6 - Repeat Example 6.1, but with the somewhat more...Ch. 6 - Using the analyses of Example 6.1 and Problem...Ch. 6 - Water flows at a speed of 25 ft/s. Calculate the...Ch. 6 - Plot the speed of air versus the dynamic pressure...Ch. 6 - Water flows in a pipeline. At a point in the line...Ch. 6 - In a pipe 0.3 m in diameter, 0.3 m3/s of water are...Ch. 6 - A jet of air from a nozzle is blown at right...Ch. 6 - The inlet contraction and test section of a...Ch. 6 - Maintenance work on high-pressure hydraulic...Ch. 6 - An open-circuit wind tunnel draws in air from the...Ch. 6 - Water is flowing. Calculate H(m) and p(kPa). P6.36Ch. 6 - If each gauge shows the same reading for a flow...Ch. 6 - Derive a relation between A1 and A2 so that for a...Ch. 6 - Water flows steadily up the vertical 1...Ch. 6 - Your car runs out of gas unexpectedly and you...Ch. 6 - A tank at a pressure of 50 kPa gage gets a pinhole...Ch. 6 - The water flow rate through the siphon is 5 L/s,...Ch. 6 - Water flows from a very large tank through a 5 cm...Ch. 6 - Consider frictionless, incompressible flow of air...Ch. 6 - A closed tank contains water with air above it....Ch. 6 - Water jets upward through a 3-in.-diameter nozzle...Ch. 6 - Calculate the rate of flow through this pipeline...Ch. 6 - A mercury barometer is carried in a car on a day...Ch. 6 - A racing car travels at 235 mph along a...Ch. 6 - The velocity field for a plane source at a...Ch. 6 - A smoothly contoured nozzle, with outlet diameter...Ch. 6 - Water flows steadily through a 3.25-in.-diameter...Ch. 6 - A flow nozzle is a device for measuring the flow...Ch. 6 - The head of water on a 50 mm diameter smooth...Ch. 6 - Water flows from one reservoir in a 200-mm pipe,...Ch. 6 - Barometric pressure is 14.0 psia. What is the...Ch. 6 - A spray system is shown in the diagram. Water is...Ch. 6 - Water flows out of a kitchen faucet of...Ch. 6 - A horizontal axisymmetric jet of air with...Ch. 6 - The water level in a large tank is maintained at...Ch. 6 - Many recreation facilities use inflatable bubble...Ch. 6 - Water flows at low speed through a circular tube...Ch. 6 - Describe the pressure distribution on the exterior...Ch. 6 - An aspirator provides suction by using a stream of...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Water is being pumped from the lower reservoir...Ch. 6 - The turbine extracts power from the water flowing...Ch. 6 - Consider a two-dimensional fluid flow: u = ax + by...Ch. 6 - The velocity field for a two-dimensional flow is...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The flow field for a plane source at a distance h...Ch. 6 - The stream function of a flow field is = Ax2y ...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The stream function of a flow field is = Ax3 ...Ch. 6 - A flow field is represented by the stream function...Ch. 6 - Consider the flow field represented by the...Ch. 6 - Show by expanding and collecting real and...Ch. 6 - Consider the flow field represented by the...Ch. 6 - An incompressible flow field is characterized by...Ch. 6 - Consider an air flow over a flat wall with an...Ch. 6 - A source with a strength of q = 3 m2/s and a sink...Ch. 6 - The velocity distribution in a two-dimensional,...Ch. 6 - Consider the flow past a circular cylinder, of...Ch. 6 - The flow in a corner with an angle can be...Ch. 6 - Consider the two-dimensional flow against a flat...Ch. 6 - A source and a sink with strengths of equal...Ch. 6 - A flow field is formed by combining a uniform flow...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Another term for an enlargement is a diffuser. A diffuser is used to convert kinetic energy (v2/2g) to pressure...
Applied Fluid Mechanics (7th Edition)
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
In each case, construct the parallelogram law to show FR = F1 + F2. Then establish the triangle rule, where FR ...
Statics and Mechanics of Materials (5th Edition)
The copper shaft is subjected to the axial loads shown. Determine the displacement of end A with respect to end...
Mechanics of Materials (10th Edition)
ICA 8-34
A sensor is submerged in a silo to detect any bacterial growth in the stored fluid. The stored fluid h...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Pressurized water at Tm,i=200C is pumped at m=2kg/s from a power plant to a nearby industrial user through a th...
Fundamentals of Heat and Mass Transfer
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An oil of kinematic viscosity 0,5 stoke is flowing through a pipe of diameter 300 mm at the rate of 320 litres per sec. Find the head lost due to friction for a length of 60 m of the pipe?arrow_forwardi need the answer quicklyarrow_forwardAs seen in the figure above, the water is directed downward in the installation with a 25 ° narrowing elbow in a piping system with a volumetric flow of 0.025 m3 / s. Effective pressure at 1 point is measured as 2 bar. Calculate (a) the effective pressure at point 2 (b) the x and y components of the force required to hold the elbow in place and the resultant force in the case where the flow is frictionless and gravitational effects are neglected. (pwater=1000 kg/m3, g=9.81m/s2)arrow_forward
- Subject :Fluid mechanics Give me right solution. Help me urgentarrow_forwardWater flows through a pipe having an inner radius of 20mm at the rate of 42 kg/hr at 20^0C. Viscosity of water is 0.001 kg/ ms. Find reynolds number of the flow?arrow_forwardIt is desired to pass water from point 1 to point 3 to run a fluid engine, pressure p1= 700kpa and pressure p3=500kpa, the pipe diameter is uniform. The external diameter has a value of 28mm with a thickness of 2mm. The fluid velocity in the pipe is 3 m/s. If the friction losses due to the elbow and the valve are estimated to be 4N.m/N, what is the power in kW it should have at the output if it has an efficiency of 85 %?arrow_forward
- mechanical fluid A crude oil of kinematic viscosity 0.4 stoke is flowing through a pipe of diameter 300 mm at the rate of 300 litres per sec. Find the head lost due to friction for a length of 50 m of the pipe.arrow_forward4. Water flows out of a large tank through a 1-cm diameter siphon tube. The siphon is terminated with a nozzle of diameter 3 mm. Determine the minimum pressure in the siphon and determine the velocity of the water leaving the siphon. Assume laminar flow and assume all energy losses due to effects of viscosity are negligible. 1 m 3 m water, 20 °C Nozzlearrow_forwardA portion of a horizontal pipeline consists of a 150mm diameter pipe joined by sudden enlargement to a 225mm diameter pipe.water is flowing through it at the rate of 0•05m^3/s.calculate 1.loss head due to sudden expansion 2.pressure difference in the two pipes 3.change in pressure if the change of section is gradual without any loss.arrow_forward
- 4. A pipe carries oil of density 800 kg/m³. At a given point (1) the pipe has a bore area of 0.005 m² and the oil flows with a mean velocity of 4 m/s with a gauge pressure of 800 kPa. Point (2) is further along the pipe and there the bore area is 0.002 m² and the level is 50 m above point (1). Calculate the pressure at this point (2). Neglect friction. (374 kPa)arrow_forwardCalculatorWater flows through a horizontal duct of diameter 0.5 m with a velocity of 0.4 m/s. If the friction factor is 0.002 calculate the pressure difference between two points 24.8 m apart. Assume the density of water is 1000 kg/m3 Your answer should be in Pascalsarrow_forwardThe ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3/hour. The length of the pipe is 35m and there are 2 elbows. Calculate the pump power requirement. The properties of the solution are density 975 kg/m3 and viscosity 4x 10-4 Pa s. a. Reynolds number = b. Energy Loss along a straight pipe = J/kg. c. Energy Loss in turns = J/kg. d. Total energy to overcome friction = J/kg. e. Energy to raise water to height = J/kg. f. Theoretical energy requirement of the pump kg ethanol/second = J/kg. g. Actual pump power requirement = watt.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License