Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 30P
Water flows in a pipeline. At a point in the line where the diameter is 7 in., the velocity is 12 fps and the pressure is 50 psi. At a point 40 ft away the diameter reduces to 3 in. Calculate the pressure here when the pipe is (a) horizontal, (b) vertical with flow downward, and (c) vertical with the flow upward. Explain why there is a difference in the pressure for the different situations.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
To what height will the jet of fluid rise for the conditions shown in the figure?
2. Oil (sg=0.90) is flowing at 150 L/min through a turbine. The pressure before the
turbine is 750 kPa and after the turbine 150 kPa with an elevation between these two
points of 2.3 m [ fluid entrance is on the high side ]. If the friction loss in the system is
5.10 N.m/N find (a) the power delivered to the turbine by the fluid and (b) If the
mechanical efficiency of the turbine is 80 % find the power output from the turbine.
Answer the problem correctly and provide complete and readable solutions. If you can explain the process (briefly), please do so. Thank you!
Chapter 6 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 6 - An incompressible frictionless flow field is given...Ch. 6 - A velocity field in a fluid with density of 1000...Ch. 6 - The x component of velocity in an incompressible...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - The velocity field for a plane source located...Ch. 6 - In a two-dimensional frictionless, incompressible...Ch. 6 - Consider a two-dimensional incompressible flow...Ch. 6 - An incompressible liquid with a density of 900...Ch. 6 - Consider a flow of water in pipe. What is the...
Ch. 6 - The velocity field for a plane vortex sink is...Ch. 6 - An incompressible liquid with negligible viscosity...Ch. 6 - Consider water flowing in a circular section of a...Ch. 6 - Consider a tornado as air moving in a circular...Ch. 6 - A nozzle for an incompressible, inviscid fluid of...Ch. 6 - A diffuser for an incompressible, inviscid fluid...Ch. 6 - A liquid layer separates two plane surfaces as...Ch. 6 - Consider Problem 6.15 with the nozzle directed...Ch. 6 - Consider Problem 6.16 with the diffuser directed...Ch. 6 - A rectangular computer chip floats on a thin layer...Ch. 6 - Heavy weights can be moved with relative ease on...Ch. 6 - The y component of velocity in a two-dimensional...Ch. 6 - The velocity field for a plane doublet is given in...Ch. 6 - Tomodel the velocity distribution in the curved...Ch. 6 - Repeat Example 6.1, but with the somewhat more...Ch. 6 - Using the analyses of Example 6.1 and Problem...Ch. 6 - Water flows at a speed of 25 ft/s. Calculate the...Ch. 6 - Plot the speed of air versus the dynamic pressure...Ch. 6 - Water flows in a pipeline. At a point in the line...Ch. 6 - In a pipe 0.3 m in diameter, 0.3 m3/s of water are...Ch. 6 - A jet of air from a nozzle is blown at right...Ch. 6 - The inlet contraction and test section of a...Ch. 6 - Maintenance work on high-pressure hydraulic...Ch. 6 - An open-circuit wind tunnel draws in air from the...Ch. 6 - Water is flowing. Calculate H(m) and p(kPa). P6.36Ch. 6 - If each gauge shows the same reading for a flow...Ch. 6 - Derive a relation between A1 and A2 so that for a...Ch. 6 - Water flows steadily up the vertical 1...Ch. 6 - Your car runs out of gas unexpectedly and you...Ch. 6 - A tank at a pressure of 50 kPa gage gets a pinhole...Ch. 6 - The water flow rate through the siphon is 5 L/s,...Ch. 6 - Water flows from a very large tank through a 5 cm...Ch. 6 - Consider frictionless, incompressible flow of air...Ch. 6 - A closed tank contains water with air above it....Ch. 6 - Water jets upward through a 3-in.-diameter nozzle...Ch. 6 - Calculate the rate of flow through this pipeline...Ch. 6 - A mercury barometer is carried in a car on a day...Ch. 6 - A racing car travels at 235 mph along a...Ch. 6 - The velocity field for a plane source at a...Ch. 6 - A smoothly contoured nozzle, with outlet diameter...Ch. 6 - Water flows steadily through a 3.25-in.-diameter...Ch. 6 - A flow nozzle is a device for measuring the flow...Ch. 6 - The head of water on a 50 mm diameter smooth...Ch. 6 - Water flows from one reservoir in a 200-mm pipe,...Ch. 6 - Barometric pressure is 14.0 psia. What is the...Ch. 6 - A spray system is shown in the diagram. Water is...Ch. 6 - Water flows out of a kitchen faucet of...Ch. 6 - A horizontal axisymmetric jet of air with...Ch. 6 - The water level in a large tank is maintained at...Ch. 6 - Many recreation facilities use inflatable bubble...Ch. 6 - Water flows at low speed through a circular tube...Ch. 6 - Describe the pressure distribution on the exterior...Ch. 6 - An aspirator provides suction by using a stream of...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Water is being pumped from the lower reservoir...Ch. 6 - The turbine extracts power from the water flowing...Ch. 6 - Consider a two-dimensional fluid flow: u = ax + by...Ch. 6 - The velocity field for a two-dimensional flow is...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The flow field for a plane source at a distance h...Ch. 6 - The stream function of a flow field is = Ax2y ...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The stream function of a flow field is = Ax3 ...Ch. 6 - A flow field is represented by the stream function...Ch. 6 - Consider the flow field represented by the...Ch. 6 - Show by expanding and collecting real and...Ch. 6 - Consider the flow field represented by the...Ch. 6 - An incompressible flow field is characterized by...Ch. 6 - Consider an air flow over a flat wall with an...Ch. 6 - A source with a strength of q = 3 m2/s and a sink...Ch. 6 - The velocity distribution in a two-dimensional,...Ch. 6 - Consider the flow past a circular cylinder, of...Ch. 6 - The flow in a corner with an angle can be...Ch. 6 - Consider the two-dimensional flow against a flat...Ch. 6 - A source and a sink with strengths of equal...Ch. 6 - A flow field is formed by combining a uniform flow...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
How does linear friction welding differ from friction welding?
Degarmo's Materials And Processes In Manufacturing
Liquid ammonia has a specific gravity of 0.826. Calculate the volume in cm3 that would weigh 5.0 lb.
Applied Fluid Mechanics (7th Edition)
State if these members are in tension or compression. Probs. 6-31
Engineering Mechanics: Statics
Air flowing at the rate of 1000 cfm and with a temperature of 80 F is mixed with 600 cfm of air at 30 F. Use Eq...
Heating Ventilating and Air Conditioning: Analysis and Design
The uniform slender rod of mass m is suspended by a ball-and-socket joint at O and two cables. Determine the fo...
Engineering Mechanics: Statics
A piston/cylinder with a cross-sectional area of 0.01m2 has a piston mass of 65kg plus a force of 800N resting ...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the pressure head at entry of the pipe, when the pressure of flowing fluid is 125 N/cm? The pressure head at entry (Unit in Pascal)arrow_forwardProblem 5. The fully-developed velocity profile for laminar flow in a pipe is very different from that for turbulent flow. For laminar flow, the velocity profile is parabolic (where is centerline velocity): = 1 - (1/2)² For turbulent flow, the time averaged velocity profile can be approximated by a power-law profile: v = (1-2) 1/ Find the ratio of average velocity to centerline velocity, V/Vc, and the dimensionless radial location, * = r/R, where you would need to place a Pitot tube if it is to measure the average velocity in the pipe for (a) laminar flow and (b) turbulent flow with n = 6.0 at Rep = 20,000. NOTE: For the integration of the turbulent profile, let * = r/R and y* = 1 − p*.arrow_forwardanswer it asap and correctlyarrow_forward
- plz helparrow_forwardWhat is the pressure difference across the valve prior to being opened? The pressure at the inlet pipe into tank 2 can be taken to be atmosphere. Take the height of the valve to be 8m. (HINT: if the valve is shut, what is the velocity everywhere?)arrow_forwardIf the velocity in a 300-mm pipe is 0.50 m/s, what is the velocity in a 75-mm-diameter jet issuing from a nozzle attached to the pipe?arrow_forward
- what will be the pressure gradient (kpa/m) at L=D30 cm through the nozzle? At L=0, the liquid flows inside the nozzle has a specific gravity S=1.2, at L=0, the velocity is 2 m/s while at L=D70 cm, the velocity is 6 m/s. Assume steady and inviscid flow. The velocity varies linearly with distance through the .nozzle Larrow_forwardPlease give a detailed Handwritten solution.arrow_forwardA small, high pressure water jet can be used for cutting various materials. A jet with a speed of 700 m/s and a diameter of 0.10 mm is required for precision cutting. Determine (a) the pressure within the nozzle (KPa gauge) and (b) the force (N) needed to hold the nozzle to the pipe for the nozzle shown below. L = 4.54 mm d = 1.50 mm L = 1.57 mm d = 0.10 mmarrow_forward
- 4. A pipe carries oil of density 800 kg/m³. At a given point (1) the pipe has a bore area of 0.005 m² and the oil flows with a mean velocity of 4 m/s with a gauge pressure of 800 kPa. Point (2) is further along the pipe and there the bore area is 0.002 m² and the level is 50 m above point (1). Calculate the pressure at this point (2). Neglect friction. (374 kPa)arrow_forwardWhat must the gauge pressure p be at A if the volume flow rate out of the pipe at point B is 0.0800 m^3/s?arrow_forwardA siphon pipe of diameter 250 mm contracts to a diameter of 100 mm over a vertical distance of 5 m before emptying into a river. If the pipe is full of water flowing at 0.1 m/s at the 250 mm section, what is the absolute pressure at this point, and what is the water velocity just before it vents into the river? You should assume the pipe to be frictionless and take atmospheric pressure to be 100 kPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License