Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 16P
A diffuser for an incompressible, inviscid fluid of density ρ = 1000 kg/m3 consists of a horizontal diverging section of pipe. At the inlet the diameter is Di = 0.25 m, and at the outlet the diameter is Do = 0.75 m. The diffuser length is L = 1 m, and the diameter increases linearly with distance x along the diffuser. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is Vi = 5 m/s. Plot the pressure gradient through the diffuser, and find its maximum value. If the pressure gradient must be no greater than 25 kPa/m, how long would the diffuser have to be?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H5
The velocity of an incompressible fluid flowing through a vertically placed pipe of radius RCreate your profile (vz). Note: The end effects will be neglected, the fluid flows in the laminar region.
A pipe of 20 cm diameter is carrying water with a mean velocity of 3 m/sec. Calculate the discharge. Ifthe pipe bifurcates into two pipes of 10 cm diameter each, find the velocity in the 10 cm diameter pipeand state at what rate and why the velocity has increased or decreased as compared to that in 20 cmdiameter pipe.
Chapter 6 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 6 - An incompressible frictionless flow field is given...Ch. 6 - A velocity field in a fluid with density of 1000...Ch. 6 - The x component of velocity in an incompressible...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - The velocity field for a plane source located...Ch. 6 - In a two-dimensional frictionless, incompressible...Ch. 6 - Consider a two-dimensional incompressible flow...Ch. 6 - An incompressible liquid with a density of 900...Ch. 6 - Consider a flow of water in pipe. What is the...
Ch. 6 - The velocity field for a plane vortex sink is...Ch. 6 - An incompressible liquid with negligible viscosity...Ch. 6 - Consider water flowing in a circular section of a...Ch. 6 - Consider a tornado as air moving in a circular...Ch. 6 - A nozzle for an incompressible, inviscid fluid of...Ch. 6 - A diffuser for an incompressible, inviscid fluid...Ch. 6 - A liquid layer separates two plane surfaces as...Ch. 6 - Consider Problem 6.15 with the nozzle directed...Ch. 6 - Consider Problem 6.16 with the diffuser directed...Ch. 6 - A rectangular computer chip floats on a thin layer...Ch. 6 - Heavy weights can be moved with relative ease on...Ch. 6 - The y component of velocity in a two-dimensional...Ch. 6 - The velocity field for a plane doublet is given in...Ch. 6 - Tomodel the velocity distribution in the curved...Ch. 6 - Repeat Example 6.1, but with the somewhat more...Ch. 6 - Using the analyses of Example 6.1 and Problem...Ch. 6 - Water flows at a speed of 25 ft/s. Calculate the...Ch. 6 - Plot the speed of air versus the dynamic pressure...Ch. 6 - Water flows in a pipeline. At a point in the line...Ch. 6 - In a pipe 0.3 m in diameter, 0.3 m3/s of water are...Ch. 6 - A jet of air from a nozzle is blown at right...Ch. 6 - The inlet contraction and test section of a...Ch. 6 - Maintenance work on high-pressure hydraulic...Ch. 6 - An open-circuit wind tunnel draws in air from the...Ch. 6 - Water is flowing. Calculate H(m) and p(kPa). P6.36Ch. 6 - If each gauge shows the same reading for a flow...Ch. 6 - Derive a relation between A1 and A2 so that for a...Ch. 6 - Water flows steadily up the vertical 1...Ch. 6 - Your car runs out of gas unexpectedly and you...Ch. 6 - A tank at a pressure of 50 kPa gage gets a pinhole...Ch. 6 - The water flow rate through the siphon is 5 L/s,...Ch. 6 - Water flows from a very large tank through a 5 cm...Ch. 6 - Consider frictionless, incompressible flow of air...Ch. 6 - A closed tank contains water with air above it....Ch. 6 - Water jets upward through a 3-in.-diameter nozzle...Ch. 6 - Calculate the rate of flow through this pipeline...Ch. 6 - A mercury barometer is carried in a car on a day...Ch. 6 - A racing car travels at 235 mph along a...Ch. 6 - The velocity field for a plane source at a...Ch. 6 - A smoothly contoured nozzle, with outlet diameter...Ch. 6 - Water flows steadily through a 3.25-in.-diameter...Ch. 6 - A flow nozzle is a device for measuring the flow...Ch. 6 - The head of water on a 50 mm diameter smooth...Ch. 6 - Water flows from one reservoir in a 200-mm pipe,...Ch. 6 - Barometric pressure is 14.0 psia. What is the...Ch. 6 - A spray system is shown in the diagram. Water is...Ch. 6 - Water flows out of a kitchen faucet of...Ch. 6 - A horizontal axisymmetric jet of air with...Ch. 6 - The water level in a large tank is maintained at...Ch. 6 - Many recreation facilities use inflatable bubble...Ch. 6 - Water flows at low speed through a circular tube...Ch. 6 - Describe the pressure distribution on the exterior...Ch. 6 - An aspirator provides suction by using a stream of...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Water is being pumped from the lower reservoir...Ch. 6 - The turbine extracts power from the water flowing...Ch. 6 - Consider a two-dimensional fluid flow: u = ax + by...Ch. 6 - The velocity field for a two-dimensional flow is...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The flow field for a plane source at a distance h...Ch. 6 - The stream function of a flow field is = Ax2y ...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The stream function of a flow field is = Ax3 ...Ch. 6 - A flow field is represented by the stream function...Ch. 6 - Consider the flow field represented by the...Ch. 6 - Show by expanding and collecting real and...Ch. 6 - Consider the flow field represented by the...Ch. 6 - An incompressible flow field is characterized by...Ch. 6 - Consider an air flow over a flat wall with an...Ch. 6 - A source with a strength of q = 3 m2/s and a sink...Ch. 6 - The velocity distribution in a two-dimensional,...Ch. 6 - Consider the flow past a circular cylinder, of...Ch. 6 - The flow in a corner with an angle can be...Ch. 6 - Consider the two-dimensional flow against a flat...Ch. 6 - A source and a sink with strengths of equal...Ch. 6 - A flow field is formed by combining a uniform flow...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water flows over a flat surface at 4 ft/s, as shown in Fig. 5 . A pump draws off water through a narrow slit at a vol- ume rate of 0.1 ft/s per foot length of the slit. Assume that the fluid is incompressible and inviscid and can be represented by the com- bination of a uniform flow and a sink. Locate the stagnation point on the wall (point A) and determine the equation for the stagnation streamline. How far above the surface, H, must the fluid be so that it does not get sucked into the slit? 5- 4 ft/s 0.1 ftls (per foot of length of slit)arrow_forwardAn artery reduces in area from 0.00034 m2 at its inlet to 0.00022 m2 at its outlet. Blood enters the artery at velocity 0.15 m/s and pressure 15,000 Pa. Blood leaves the artery at a pressure 10,000 Pa. Assuming that the artery may be modelled as a straight, circular tube and neglecting gravity what is the force exerted on the artery by the fluid. The density of blood is 1050 kg/m3. Give your answer in Newtons.arrow_forwardA two-dimensional reducing bend has a linear velocity profile at section 1. The flow is uniform at sections 2 and 3. The fluid is incompressible, and the flow is steady. Find the maximum velocity at section 1, V1,max.arrow_forward
- Read the question carefully and give me right solution according to the questionarrow_forwardConsider steady, incompressible, laminar flow of a Newtonian fluid in an infinitely long round pipe of diameter D or radius R = D/2 inclined at angle a. There is no applied pressure gradient (@P/x = 0). Instead, the fluid flows down the pipe due to gravity alone. We adopt the coordinate system shown, with x down the axis of the pipe. Derive an expression for the x- component of velocity u as a function of radius r and the other parameters of the problem. Calculate the volume flow rate and average axial velocity through the pipe. 10₂ α Pipe wall Fluid: p. p Rarrow_forwardA 200 mm diameter pipeline is laid on the ground. At a particular point, the piezometric head is 20 m. Total energy head of water at a point is 26 m. The Discharge (L/s) of water through the pipe isarrow_forward
- Water is flowing in a circular pipe of varying cross-sectional area. At one point in the pipe the radius of the pipe is 0.2 m. What must be the water velocity at this point if the volume velocity o water is 0.8 m³.s^-1? Hint: Use continuity equation.arrow_forward6arrow_forwardPlease solve it with explanation.thx.arrow_forward
- JA two-dimensional reducing bend has a linear velocity profile at section O The flow is uniform at sections and O The fluid is incompressible and the flow is steady. Find #1=0.5 the maximum velocity, V1,mav at section O V1,max 30° V3 - 5 m/s h3 - 0.15 m V2 = 1 m/s h2 - 0.2arrow_forwardA,Barrow_forwardA Newtonian fluid flows in the annular space created by a concentric pipe and rod moving to the right at a constant velocity V (this could be the configuration of a wire coating process). The flow is the result of the shear stress created by the moving rod. The flow is steady and incompressible. Assume u, is only a function of r, both u, and ue (as well as their derivatives) are zero, the pipe is horizontal, and the pressure gradient in the z direction is constant. Derive an expression for the velocity profile uz as a function of r. Note: R, is the inside radius of the outer pipe and R; is the radius of the moving rod. R. R; Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License