Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
bartleby

Videos

Question
Book Icon
Chapter 5.1, Problem 15PSC

a.

To determine

To show: Diagonals CS¯ and OI¯ of isosceles trapezoid CISO do not bisect each other.

a.

Expert Solution
Check Mark

Explanation of Solution

Given information:

The coordinates of point C are (3,8) .

The coordinates of point I are (5,0) .

The coordinates of point S are (5,0) .

The coordinates of point O are (3,8) .

Proof:

  Geometry For Enjoyment And Challenge, Chapter 5.1, Problem 15PSC , additional homework tip  1

The coordinates of point Care(3,8) .

The coordinates of point S are (5,0) .

The coordinates of midpoints of CS¯ are ((3+52),(8+02))=(1,4) .

The coordinates of midpoints of OI¯ are ((352),(8+02))=(1,4) .

Diagonals CS¯ and OI¯ do not bisect each other, since midpoints are not the same points.

b.

To determine

To check:That Diagonals CS¯ and OI¯ of isosceles trapezoid CISO are perpendicular.

b.

Expert Solution
Check Mark

Answer to Problem 15PSC

Yes,diagonals CS¯ and OI¯ are perpendicular.

Explanation of Solution

Given information:

The coordinates of point C are (3,8) .

The coordinates of point I are (5,0) .

The coordinates of point S are (5,0) .

The coordinates of point O are (3,8) .

Formula used:

Slope of a line:

  m=y2y1x2x1m=slope

  (x1,y1) are coordinates of first point in the line.

  (x2,y2) are coordinates of second point in the line.

  Geometry For Enjoyment And Challenge, Chapter 5.1, Problem 15PSC , additional homework tip  2

The coordinates of point C are (3,8) .

The coordinates of point S are (5,0) .

We now check the slopes of isosceles trapezoid CISO.

Slope of CS¯=085(3)=88=1

The coordinates of point O are (3,8) .

The coordinates of point I are (5,0) .

Slope of OI¯=0853=88=1

Since the product of slopes CS¯ and OI¯ is -1, diagonals CS¯ and OI¯ are perpendicular.

c.

To determine

To Check:That the Diagonals of every isosceles trapezoid are perpendicular.

c.

Expert Solution
Check Mark

Answer to Problem 15PSC

No, diagonals are not necessarily perpendicular.

Explanation of Solution

Given information:

The coordinates of point C are (3,8) .

The coordinates of point I are (5,0) .

The coordinates of point S are (5,0) .

The coordinates of point O are (3,8) .

Formula used:

Slope of a line:

  m=y2y1x2x1m=slope

  (x1,y1) are coordinates of first point in the line.

  (x2,y2) are coordinates of second point in the line.

  Geometry For Enjoyment And Challenge, Chapter 5.1, Problem 15PSC , additional homework tip  3

The coordinates of point C are (3,8) .

The coordinates of point S are (5,0) .

We now check the slopes of isosceles trapezoid CISO.

Slope of CS¯=085(3)=88=1

The coordinates of point O are (3,8) .

The coordinates of point I are (5,0) .

Slope of OI¯=0853=88=1

Since the product of slopes CS¯ and OI¯ is -1, diagonals CS¯ and OI¯ are perpendicular.

If I and S are moved to (6,0) and (6,0) respectively.

The coordinates of point C are (3,8) .

The coordinates of point S are (6,0) .

We now check the slopes of isosceles trapezoid CISO.

Slope of CS¯=086(3)=89

The coordinates of point O are (3,8) .

The coordinates of point I are (6,0) .

Slope of OI¯=0863=89=89

Since the product of slopes CS¯ and OI¯ is not -1, diagonals CS¯ and OI¯ are not perpendicular.

d.

To determine

To find:The figure to draw to obtain a value of OS¯ .

d.

Expert Solution
Check Mark

Answer to Problem 15PSC

The value of OS¯ is 8.25 .

Explanation of Solution

Given information:

The coordinates of point C are (3,8) .

The coordinates of point I are (5,0) .

The coordinates of point S are (5,0) .

The coordinates of point O are (3,8) .

Formula used:

The distance between two points by using the distance formula, which is an application of the Pythagoras theorem.

D=(x2x1)2+(y2y1)2

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 5.1, Problem 15PSC , additional homework tip  4

In right angle triangle,

  a2+b2c2

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 5.1, Problem 15PSC , additional homework tip  5

Draw b perpendicular to IS¯ from point O to make a right triangle and then use Pythagoras Theorem.

The point A lies on x axis. Its y coordinate is 0.The x coordinate will be same as of x coordinate of point O.

The coordinates of point A are (3,0) .

The distance OA can be calculated by applying Pythagoras Theorem.

  OA=(33)2+(08)2OA=(0)2+(8)2OA=64OA=8

The distance AS can be calculated by applying Pythagoras Theorem.

  AS=(53)2+(00)2AS=(2)2+(0)2AS=4+0AS=4AS=2

In right angle triangle OAS, we get

  (OS)2=(OA)2+(AS)2(OS)2=(8)2+(2)2(OS)2=64+4(OS)2=68OS=68OS8.25

Chapter 5 Solutions

Geometry For Enjoyment And Challenge

Ch. 5.1 - Prob. 11PSBCh. 5.1 - Prob. 12PSBCh. 5.1 - Prob. 13PSBCh. 5.1 - Prob. 14PSCCh. 5.1 - Prob. 15PSCCh. 5.2 - Prob. 1PSACh. 5.2 - Prob. 2PSACh. 5.2 - Prob. 3PSACh. 5.2 - Prob. 4PSACh. 5.2 - Prob. 5PSACh. 5.2 - Prob. 6PSACh. 5.2 - Prob. 7PSACh. 5.2 - Prob. 8PSACh. 5.2 - Prob. 9PSACh. 5.2 - Prob. 10PSACh. 5.2 - Prob. 11PSACh. 5.2 - Prob. 12PSACh. 5.2 - Prob. 13PSACh. 5.2 - Prob. 14PSACh. 5.2 - Prob. 15PSACh. 5.2 - Prob. 16PSACh. 5.2 - Prob. 17PSACh. 5.2 - Prob. 18PSACh. 5.2 - Prob. 19PSACh. 5.2 - Prob. 20PSACh. 5.2 - Prob. 21PSACh. 5.2 - Prob. 22PSBCh. 5.2 - Prob. 23PSBCh. 5.2 - Prob. 24PSBCh. 5.2 - Prob. 25PSCCh. 5.2 - Prob. 26PSCCh. 5.2 - Prob. 27PSCCh. 5.2 - Prob. 28PSCCh. 5.3 - Prob. 1PSACh. 5.3 - Prob. 2PSACh. 5.3 - Prob. 3PSACh. 5.3 - Prob. 4PSACh. 5.3 - Prob. 5PSACh. 5.3 - Prob. 6PSACh. 5.3 - Prob. 7PSACh. 5.3 - Prob. 8PSACh. 5.3 - Prob. 9PSACh. 5.3 - Prob. 10PSACh. 5.3 - Prob. 11PSACh. 5.3 - Prob. 12PSACh. 5.3 - Prob. 13PSACh. 5.3 - Prob. 14PSBCh. 5.3 - Prob. 15PSBCh. 5.3 - Prob. 16PSBCh. 5.3 - Prob. 17PSBCh. 5.3 - Prob. 18PSBCh. 5.3 - Prob. 19PSBCh. 5.3 - Prob. 20PSBCh. 5.3 - Prob. 21PSBCh. 5.3 - Prob. 22PSBCh. 5.3 - Prob. 23PSBCh. 5.3 - Prob. 24PSBCh. 5.3 - Prob. 25PSBCh. 5.3 - Prob. 26PSCCh. 5.3 - Prob. 27PSCCh. 5.3 - Prob. 28PSCCh. 5.3 - Prob. 29PSDCh. 5.3 - Prob. 30PSDCh. 5.4 - Prob. 1PSACh. 5.4 - Prob. 2PSACh. 5.4 - Prob. 3PSACh. 5.4 - Prob. 4PSACh. 5.4 - Prob. 5PSACh. 5.4 - Prob. 6PSACh. 5.4 - Prob. 7PSACh. 5.4 - Prob. 8PSACh. 5.4 - Prob. 9PSACh. 5.4 - Prob. 10PSACh. 5.4 - Prob. 11PSACh. 5.4 - Prob. 12PSACh. 5.4 - Prob. 13PSBCh. 5.4 - Prob. 14PSBCh. 5.4 - Prob. 15PSBCh. 5.4 - Prob. 16PSBCh. 5.4 - Prob. 17PSBCh. 5.4 - Prob. 18PSBCh. 5.4 - Prob. 19PSBCh. 5.4 - Prob. 20PSBCh. 5.4 - Prob. 21PSCCh. 5.4 - Prob. 22PSCCh. 5.5 - Prob. 1PSACh. 5.5 - Prob. 2PSACh. 5.5 - Prob. 3PSACh. 5.5 - Prob. 4PSACh. 5.5 - Prob. 5PSACh. 5.5 - Prob. 6PSACh. 5.5 - Prob. 7PSACh. 5.5 - Prob. 8PSACh. 5.5 - Prob. 9PSACh. 5.5 - Prob. 10PSACh. 5.5 - Prob. 11PSACh. 5.5 - Prob. 12PSACh. 5.5 - Prob. 13PSACh. 5.5 - Prob. 14PSACh. 5.5 - Prob. 15PSBCh. 5.5 - Prob. 16PSBCh. 5.5 - Prob. 17PSBCh. 5.5 - Prob. 18PSBCh. 5.5 - Prob. 19PSBCh. 5.5 - Prob. 20PSBCh. 5.5 - Prob. 21PSBCh. 5.5 - Prob. 22PSBCh. 5.5 - Prob. 23PSBCh. 5.5 - Prob. 24PSBCh. 5.5 - Prob. 25PSBCh. 5.5 - Prob. 26PSBCh. 5.5 - Prob. 27PSBCh. 5.5 - Prob. 28PSCCh. 5.5 - Prob. 29PSCCh. 5.5 - Prob. 30PSCCh. 5.6 - Prob. 1PSACh. 5.6 - Prob. 2PSACh. 5.6 - Prob. 3PSACh. 5.6 - Prob. 4PSACh. 5.6 - Prob. 5PSACh. 5.6 - Prob. 6PSACh. 5.6 - Prob. 7PSACh. 5.6 - Prob. 8PSACh. 5.6 - Prob. 9PSACh. 5.6 - Prob. 10PSACh. 5.6 - Prob. 11PSBCh. 5.6 - Prob. 12PSBCh. 5.6 - Prob. 13PSBCh. 5.6 - Prob. 14PSBCh. 5.6 - Prob. 15PSBCh. 5.6 - Prob. 16PSBCh. 5.6 - Prob. 17PSBCh. 5.6 - Prob. 18PSBCh. 5.6 - Prob. 19PSCCh. 5.6 - Prob. 20PSCCh. 5.6 - Prob. 21PSDCh. 5.7 - Prob. 1PSACh. 5.7 - Prob. 2PSACh. 5.7 - Prob. 3PSACh. 5.7 - Prob. 4PSACh. 5.7 - Prob. 5PSACh. 5.7 - Prob. 6PSACh. 5.7 - Prob. 7PSACh. 5.7 - Prob. 8PSACh. 5.7 - Prob. 9PSACh. 5.7 - Prob. 10PSACh. 5.7 - Prob. 11PSBCh. 5.7 - Prob. 12PSBCh. 5.7 - Prob. 13PSBCh. 5.7 - Prob. 14PSBCh. 5.7 - Prob. 15PSBCh. 5.7 - Prob. 16PSBCh. 5.7 - Prob. 17PSBCh. 5.7 - Prob. 18PSBCh. 5.7 - Prob. 19PSBCh. 5.7 - Prob. 20PSBCh. 5.7 - Prob. 21PSBCh. 5.7 - Prob. 22PSBCh. 5.7 - Prob. 23PSBCh. 5.7 - Prob. 24PSBCh. 5.7 - Prob. 25PSBCh. 5.7 - Prob. 26PSCCh. 5.7 - Prob. 27PSCCh. 5.7 - Prob. 28PSCCh. 5.7 - Prob. 29PSCCh. 5 - Prob. 1RPCh. 5 - Prob. 2RPCh. 5 - Prob. 3RPCh. 5 - Prob. 4RPCh. 5 - Prob. 5RPCh. 5 - Prob. 6RPCh. 5 - Prob. 7RPCh. 5 - Prob. 8RPCh. 5 - Prob. 9RPCh. 5 - Prob. 10RPCh. 5 - Prob. 11RPCh. 5 - Prob. 12RPCh. 5 - Prob. 13RPCh. 5 - Prob. 14RPCh. 5 - Prob. 15RPCh. 5 - Prob. 16RPCh. 5 - Prob. 17RPCh. 5 - Prob. 18RPCh. 5 - Prob. 19RPCh. 5 - Prob. 20RPCh. 5 - Prob. 21RPCh. 5 - Prob. 22RPCh. 5 - Prob. 23RPCh. 5 - Prob. 24RPCh. 5 - Prob. 25RPCh. 5 - Prob. 26RPCh. 5 - Prob. 27RPCh. 5 - Prob. 28RPCh. 5 - Prob. 29RPCh. 5 - Prob. 30RP

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Geometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Algebra - Pythagorean Theorem; Author: yaymath;https://www.youtube.com/watch?v=D_y_owf1WsI;License: Standard YouTube License, CC-BY
The Organic Chemistry Tutor; Author: Pythagorean Theorem Explained!;https://www.youtube.com/watch?v=B0G35RkmwSw;License: Standard Youtube License