Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
10th Edition
ISBN: 9780073398204
Author: Richard G Budynas, Keith J Nisbett
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 74P

Two steel lubes are shrink-filled together where the nominal diameters are 40, 45, and 50 mm. Careful measurement before fitting determined the diametral interference between the tubes to be 0.062 mm. After the fit. the assembly is subjected to a torque of 900 N · m and a bending-moment of 675 N · m. Assuming no slipping between the cylinders, analyze the outer cylinder at the inner and outer radius. Determine the factor of safety using distortion energy with Sv = 415 MPa.

Expert Solution & Answer
Check Mark
To determine

The factor of safety using distortion energy theory.

Answer to Problem 74P

The factor of safety using distortion energy theory for inner radius is 1.80.

The factor of safety using distortion energy theory for outer radius is 1.84.

Explanation of Solution

Write the expression for contact pressure.

p=(Eδd2d3)[(do2d2)(d2di2)(do2di2)] (I)

Here, the contact pressure is p, the Yong’s modulus is E, the diametral interference is δd, the inner diameter is di, the outer diameter is do and the nominal diameter is d.

Write the expression for inner radius.

ri=di2 (II)

Here, the inner radius is ri.

Write the expression for outer radius.

ro=do2 (III)

Here, the outer radius is ro.

Write the expression for tangential stress at outer radius for outer member.

(σt)o=[(ri2p(ro2ri2))(2)] (IV)

Here, the tangential stress at outer radius for outer member is (σt)o.

Write the expression for tangential stress for inner member.

(σt)i=(ri2pro2ri2)(1+ro2ri2) (V)

Here, the tangential stress for inner member is (σt)i.

Write the expression for radial stress for inner member.

(σr)i=p (VI)

Here, the radial stress for inner member is (σr)i.

Write the expression for second moment of area.

I=(π64)(do4di4) (VII)

Here, the second moment of area is I.

Write the expression for stress.

(σx)=±(McI) (VIII)

Here, the stress in x plane is (σx), the bending-moment is M, the distance of the member from neutral axis is c.

Write the expression for second polar moment of area.

J=2I (IX)

Here, the second polar moment of area is J.

Write the expression for shear stress.

(τxy)=(TcJ) (X)

Here, the shear stress is τxy, the torque is T.

Write the expression for von Mises stress for outer radius.

σo=(σx2σxσy+σy2+3τxy2)12 (XI)

Here, the von Mises stress is σo, the stress in y plane is σy and shear stress in xy plane is τxy

Calculate factor of safety for outer radius.

no=(Syσo) (XII)

Here, the factor of safety for outer radius is no and the yield strength is Sy.

Write the expression for von Mises stress for inner radius.

σi=(12)[(σxσy)2+(σyσz)2+(σzσx)2+6(τxy)2]12 (XIII)

Here, the von Mises stress for inner radius is σi and stress in z plane is σz.

Calculate the factor of safety for inner radius.

ni=(Syσi) (XIV)

Here, the factor of safety for inner radius is ni.

Write the expression for nominal radius.

r=d2 (XV)

Here, the nominal radius is r.

Conclusion:

Substitute 207GPa for E, 0.062mm for δd, 50mm for do, 45mm for d and 40mm for di in Equation (I).

p=((207GPa)(0.062mm)2(45mm)3)[((50mm)2(45mm)2)((45mm)2(40mm)2)((50mm)2(40mm)2)]=(207GPa)(103MPa1GPa)(7.63069×105)=15.7955MPa15.8MPa

Substitute 40mm for di in Equation (II).

ri=di2=40mm2

Substitute 50mm for do in Equation (III).

ro=do2=50mm2

Substitute 45mm for d in Equation (XV).

r=d2=45mm2

Substitute (45mm2) for ri, 15.8MPa for p, (50mm2) for ro in Equation (IV).

(σt)o=[((45mm2)2(15.8MPa)((50mm2)2(45mm2)2))(2)]=(63990MPamm2475mm2)=134.7157MPa134.7MPa

The radial stress for outer radius is zero. Thus,

(σr)o=0

Substitute (45mm2) for ri, (50mm2) for ro and 15.8MPa for p in Equation (V).

(σt)i=((45mm2)2(15.8MPa)((50mm2)2(45mm2)2))(1+(50mm2)2(45mm2)2)=(15.80MPa)(9.5263)150.5MPa

Substitute 15.8MPa for p in Equation (VI).

(σr)i=15.8MPa

Substitute 50mm for do and 40mm for di in Equation (VII).

I=(π64)((50mm)4(40mm)4)=(π64)(3690000mm4)=(181132.4514)mm4(181.132×103)mm4

Substitute (ro) for c, for outer member in Equation (VIII).

(σx)o=±(M(ro)I) (XVI)

Here, the stress in outer member is (σx)o.

Substitute 675Nm for M, (50mm2) for ro and (181.132×103)mm4 for I in Equation (XVI).

(σx)o=±((675Nm)(50mm2)(181.132×103)mm4)=±((675Nm)(25mm)(1m1000mm)(181.132×103)mm4(1012m41mm4))=±(93.164×106)N/m2(1MPa106N/m2)±(93.2)MPa

Substitute (r) for c, for inner member in Equation (VIII).

(σx)i=±(M(r)I) (XVII)

Here, the stress for inner member is (σx)i.

Substitute 675Nm for M, (45mm2) for r and (181.132×103)mm4 for I in Equation (XVII).

(σx)i=±((675Nm)(45mm2)(181.132×103)mm4)=±((675Nm)(22.5mm)(1m1000mm)(181.132×103)mm4(1012m41mm4))=±(83.8476×106)N/m2(1MPa106N/m2)±(83.9)MPa

Substitute (181.132×103)mm4 for I in Equation (IX).

J=2I=(362.26×103)mm4

Substitute ro for c, for outer member in Equation (X).

(τxy)o=(T(ro)J) (XVIII)

Here, the shear stress for outer member is (τxy)o.

Substitute 900Nm for T, (50mm2) for ro and (362.26×103)mm4 for J in Equation (XVIII).

(τxy)o=((900Nm)(50mm2)(362.26×103)mm4)=((900Nm)(50mm2)(1m1000mm)(362.26×103)mm4(1012m41mm4))=(62.11×106)N/m2(1MPa106N/m2)62.1MPa

Substitute r for c in Equation (X).

(τxy)i=(T(r)J) (XIX)

Here, the shear stress for inner member is (τxy)i.

Substitute 900Nm for T, (45mm2) for ro and (362.26×103)mm4 for J in Equation (XIX).

(τxy)i=((900Nm)(45mm2)(362.26×103)mm4)=((900Nm)(45mm2)(1m1000mm)(362.26×103)mm4(1012m41mm4))=(55.899×106)N/m2(1MPa106N/m2)55.9MPa

Substitute 93.2MPa for σx, 134.7MPa for σy and 62.11MPa for τxy in Equation (XI).

σo=[((93.2MPa)2((93.2MPa)(134.7MPa))+(134.7MPa)2+3(62.11MPa)2)]12=[(50957.3263MPa2)]12225.73MPa

Substitute 415MPa for Sy and 225.73MPa for σo in Equation (XII).

no=(415MPa225.73MPa)=1.83841.84

Thus, the factor of safety for outer radius is 1.84.

The following diagram shows the 3D stress for outer radius.

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering), Chapter 5, Problem 74P

Figure (1)

Substitute (+83.9MPa) for σx, 150.5MPa for σy, (15.8MPa) for σz and 55.9MPa for τxy in Equation (XII).

σi=(12)[((83.9MPa)(150.5MPa))2+((150.5MPa)(15.8MPa))2+((15.8MPa)(83.9MPa))2+6((55.9MPa)2)]12=(12)[(60780.2MPa)]12=174.3275MPa174.33MPa

Substitute (83.9MPa) for σx, 150.5MPa for σy, (15.8MPa) for σz and 55.9MPa for τxy in Equation (XIII).

σi=(12)[((83.9MPa)(150.5MPa))2+((150.5MPa)(15.8MPa))2+((15.8MPa)(83.9MPa))2+6((55.9MPa)2)]12=(12)[(105985.52MPa)]12=230.20156MPa230.2MPa

The value of σi is larger for the negative value of σx. Thus, the value of σi is used as 230.2MPa to calculate the factor of safety.

Substitute 415MPa for Sy and 230.2MPa for σ in Equation (XIV).

ni=(415MPa230.2MPa)=1.80271.80

Thus, the factor of safety for inner radius is 1.80.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The end gear (closest to the journal bearing at A) is subjected to the loading shown in the figure. The journal bearings A and B exert on the shaft only the y and z components of the 100 mm 250 mm 50 mm support reactions. Dětermine the equilibrium torque T at gear C. Using the "Maximum 75 mm 150 mm Distortion Energy Theory" with Jallowable the together 80 MPa, smallest calculate possible diameter of the shaft millimeter that will support the loading. to the nearest 100 mm F.= 15 kN
The figure (attached) shows a belt pulley mechanism which is loaded statically. The shaft is made of AISI 1030 steel with the yield strength of 480 MPa. Using distortion energy theory (DET), determine the diameter of the shaft with a factor of safety of 2.
Correct answer I need please solve by hand

Chapter 5 Solutions

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)

Ch. 5 - 5-7 to 5-11 An AISI 1018 steel has a yield...Ch. 5 - A ductile material has the properties Syt = 60...Ch. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - 5-14 to 5-18 An AISI 4142 steel QT at 800F...Ch. 5 - 5-14 to 5-18 An AISI 4142 steel QT at 800F...Ch. 5 - 5-14 to 5-18 An AISI 4142 steel QT at 800F...Ch. 5 - A brittle material has the properties Sut = 30...Ch. 5 - Repeat Prob. 519 by first plotting the failure...Ch. 5 - For an ASTM 30 cast iron, (a) find the factors of...Ch. 5 - For an ASTM 30 cast iron, (a) find the factors of...Ch. 5 - Prob. 23PCh. 5 - For an ASTM 30 cast iron, (a) find the factors of...Ch. 5 - 5-21 to 5-25 For an ASTM 30 cast iron, (a) find...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-31 to 5-35 Repeat Probs. 526 to 530 using the...Ch. 5 - 5-31 to 5-35 Repeat Probs. 526 to 530 using the...Ch. 5 - Repeat Probs. 526 to 530 using the modified-Mohr...Ch. 5 - Repeat Probs. 526 to 530 using the modified-Mohr...Ch. 5 - Repeat Probs. 526 to 530 using the modified-Mohr...Ch. 5 - This problem illustrates that the factor of safety...Ch. 5 - For the beam in Prob. 344, p. 147, determine the...Ch. 5 - A 1020 CD steel shaft is to transmit 20 hp while...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - Prob. 42PCh. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - Prob. 45PCh. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - Prob. 47PCh. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - Build upon the results of Probs. 384 and 387 to...Ch. 5 - Using F = 416 lbf, design the lever arm CD of Fig....Ch. 5 - A spherical pressure vessel is formed of 16-gauge...Ch. 5 - This problem illustrates that the strength of a...Ch. 5 - Prob. 60PCh. 5 - A cold-drawn AISI 1015 steel tube is 300 mm OD by...Ch. 5 - Prob. 62PCh. 5 - The figure shows a shaft mounted in bearings at A...Ch. 5 - By modern standards, the shaft design of Prob. 563...Ch. 5 - Build upon the results of Prob. 340, p. 146, to...Ch. 5 - For the clevis pin of Prob. 340, p. 146, redesign...Ch. 5 - A split-ring clamp-type shaft collar is shown in...Ch. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Two steel tubes have the specifications: Inner...Ch. 5 - Repeal Prob. 5-71 for maximum shrink-fit...Ch. 5 - Prob. 73PCh. 5 - Two steel lubes are shrink-filled together where...Ch. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77PCh. 5 - Prob. 78PCh. 5 - Prob. 79PCh. 5 - Prob. 80PCh. 5 - Prob. 81PCh. 5 - For Eqs. (5-36) show that the principal stresses...Ch. 5 - Prob. 83PCh. 5 - A plate 100 mm wide, 200 mm long, and 12 mm thick...Ch. 5 - A cylinder subjected to internal pressure pi has...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license