Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
10th Edition
ISBN: 9780073398204
Author: Richard G Budynas, Keith J Nisbett
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 65P
Build upon the results of Prob. 3–40, p. 146, to determine the factor of safety for yielding based on the distortion-energy theory for each of the simplified models in parts c, d, and e of the figure for Prob. 3–40. The pin is machined from AISI 1018 hot-rolled steel. Compare the three models from a designer’s perspective in terms of accuracy, safety, and modeling time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please don't provide handwritten solution .....
The plate of the figure is subjected to a bending moment with irregular cycles, which are
repeated. In the graphic one of this cycles is represented in terms of stress which appears in
each section whose height is h. The piece is made of ductile steel. Determine the number
of repetitions of the sequence which the piece can resist before the failure takes place due
to fatigue considering a reliability of 95 %.
Data: Sult = 1.000 MPa
Syp 3D800 Mра
thickness e = 4 mm
H = 10 cm
h = 5 cm
r=1 cm
ka = 0,72
kp = 0,95
S(MPa)
M
400
h
300
200
100
W
-100
-200
6-28 The figure shows a formed round-wire cantilever spring subjected to a varying force.
The hardness tests made on 50 springs gave a minimum hardness of 400 Brinell. It is
apparent from the mounting details that there is no stress concentration. A visual
inspection of the springs indicates that the surface finish corresponds closely to a hot-
rolled finish. Ignore curvature effects on the bending stress. What number of applica-
tions is likely to cause failure? Solve using:
(a) Goodman criterion.
(b) Gerber criterion.
= 40 lbf
max
12 in-
= 20 lbf
min
Problem 6-28
Chapter 5 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Ch. 5 - A ductile hot-rolled steel bar has a minimum yield...Ch. 5 - A ductile hot-rolled steel bar has a minimum yield...Ch. 5 - A ductile hot-rolled steel bar has a minimum yield...Ch. 5 - A ductile hot-rolled steel bar has a minimum yield...Ch. 5 - A ductile hot-rolled steel bar has a minimum yield...Ch. 5 - Prob. 6PCh. 5 - 5-7 to 5-11 An AISI 1018 steel has a yield...Ch. 5 - 5-7 to 5-11 An AISI 1018 steel has a yield...Ch. 5 - 5-7 to 5-11 An AISI 1018 steel has a yield...Ch. 5 - 5-7 to 5-11 An AISI 1018 steel has a yield...
Ch. 5 - 5-7 to 5-11 An AISI 1018 steel has a yield...Ch. 5 - A ductile material has the properties Syt = 60...Ch. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - 5-14 to 5-18 An AISI 4142 steel QT at 800F...Ch. 5 - 5-14 to 5-18 An AISI 4142 steel QT at 800F...Ch. 5 - 5-14 to 5-18 An AISI 4142 steel QT at 800F...Ch. 5 - A brittle material has the properties Sut = 30...Ch. 5 - Repeat Prob. 519 by first plotting the failure...Ch. 5 - For an ASTM 30 cast iron, (a) find the factors of...Ch. 5 - For an ASTM 30 cast iron, (a) find the factors of...Ch. 5 - Prob. 23PCh. 5 - For an ASTM 30 cast iron, (a) find the factors of...Ch. 5 - 5-21 to 5-25 For an ASTM 30 cast iron, (a) find...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-26 to 5-30 A cast aluminum 195-T6 exhibits Sut =...Ch. 5 - 5-31 to 5-35 Repeat Probs. 526 to 530 using the...Ch. 5 - 5-31 to 5-35 Repeat Probs. 526 to 530 using the...Ch. 5 - Repeat Probs. 526 to 530 using the modified-Mohr...Ch. 5 - Repeat Probs. 526 to 530 using the modified-Mohr...Ch. 5 - Repeat Probs. 526 to 530 using the modified-Mohr...Ch. 5 - This problem illustrates that the factor of safety...Ch. 5 - For the beam in Prob. 344, p. 147, determine the...Ch. 5 - A 1020 CD steel shaft is to transmit 20 hp while...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - Prob. 42PCh. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - Prob. 45PCh. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - Prob. 47PCh. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - 5-39 to 5-55 For the problem specified in the...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - For the problem specified in the table, build upon...Ch. 5 - Build upon the results of Probs. 384 and 387 to...Ch. 5 - Using F = 416 lbf, design the lever arm CD of Fig....Ch. 5 - A spherical pressure vessel is formed of 16-gauge...Ch. 5 - This problem illustrates that the strength of a...Ch. 5 - Prob. 60PCh. 5 - A cold-drawn AISI 1015 steel tube is 300 mm OD by...Ch. 5 - Prob. 62PCh. 5 - The figure shows a shaft mounted in bearings at A...Ch. 5 - By modern standards, the shaft design of Prob. 563...Ch. 5 - Build upon the results of Prob. 340, p. 146, to...Ch. 5 - For the clevis pin of Prob. 340, p. 146, redesign...Ch. 5 - A split-ring clamp-type shaft collar is shown in...Ch. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Two steel tubes have the specifications: Inner...Ch. 5 - Repeal Prob. 5-71 for maximum shrink-fit...Ch. 5 - Prob. 73PCh. 5 - Two steel lubes are shrink-filled together where...Ch. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77PCh. 5 - Prob. 78PCh. 5 - Prob. 79PCh. 5 - Prob. 80PCh. 5 - Prob. 81PCh. 5 - For Eqs. (5-36) show that the principal stresses...Ch. 5 - Prob. 83PCh. 5 - A plate 100 mm wide, 200 mm long, and 12 mm thick...Ch. 5 - A cylinder subjected to internal pressure pi has...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Can you please answer these questions? (3 and 4) thank youarrow_forwardPlease answer asap I will give u ggod rating if u do not copy. thank u and please solve by yourself.arrow_forward5-63 The figure shows a shaft mounted in bearings at A and D and having pulleys at B and C. The forces shown acting on the pulley surfaces represent the belt tensions. The shaft is to be made of AISI 1035 CD steel. Using a conservative failure theory with a design factor of 2, determine the minimum shaft diameter to avoid yielding. f-in R 300 Ibf 50 lbf 59 Ibf 392 lbf D Problem 5-63 C 6 in 8-in D. 8 in B 8 inarrow_forward
- Please answer with full details.arrow_forward5. This problem illustrate that the factor of safety for a machine element depends on the particular point selected for analysis. Compute factors of safety, based upon the distortion energy theory, for stress elements A and B of the member shown in the figure. This bar is made of AISI 1015 Cold-Drawn Steel and is loaded by the forces F= 500 N, P = 5000 N, and T=25 Nm. points) %3D %3D -100 mm 15-mm D.arrow_forwardpls find box ur answer Determine the value of the von Mises stress at point A. The von Mises stress at point A is This problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold- drawn steel and is loaded by the forces F= 0.55 kN, P = 4 kN, and T = 25 N-m. Given: Sy= 280 MPa. 5 15-mm D. 100 mm- MPa.arrow_forward
- 6-10 A rotating shaft of 25-mm diameter is simply supported by bearing reaction forces R, and R2. The shaft is loaded with a transverse load of 13 kN as shown in the figure. The shaft is made from AISI 1045 hot-rolled steel. The surface has been machined. Determine (a) the minimum static factor of safety based on yielding. (b) the endurance limit, adjusted as necessary with Marin factors. (c) the minimum fatigue factor of safety based on achieving infinite life. (d) If the fatigue factor of safety is less than 1 (hint: it should be for this problem), then estimate the life of the part in number of rotations.arrow_forwardCarbon Steel L=100mm dsmall= 20mm moment of inertia ratio between stepped cross-sectional area = 1:2 F=2500 N at A and a fillet radius at the step of 2mm -loading cycles that the design can withstand before fatigue failure - calculate cycles using goodman line and max stress from static analysis. -determine the effect of the 2mm fillet ratio on the fatigue analyisis. constant force at Aarrow_forwardFatigue and Variable Loading Example 4 In the figure below the shaft is simply supported in ball bearings at A and D. The shaft rotates and the stationary load F is 6.8 kN. All fillets have a 3-mm radius. The shaft is machined from AISI 1050 cold- drawn steel. Estimate the life of the part. Repeat with: working temp T=330 °C, reliability R=90% 30 A R₁ 10 250 32 B 75 (a) 6.8 kN |--100- 38 C 125 10- -35 Darrow_forward
- 2- A chain drive using bush roller chain transmits 5500 W of power. The driving shaft on an electric motor runs at 1440 r.p.m. and velocity ratio is 4.6:1. The drive is required to operate continuously with periodic lubrication and driven machine is such that load can be regarded as fairly constant. Considering the center distance to be as minimum as possible, design the chain drive by calculating leading dimensions, number of teeth and length of the chain.arrow_forwardSolve this Carefully, Write clearly and Circle the Final answer for Tmax with the correct units and for Part B T = with the right unitsarrow_forwardFigure below shows a rotating shaft simply supported in ball bearings at A and D and loaded by a nonrotating orce Fof 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part. 6T td7 (a) Shaft drawing showing all dimensions in millimeters; all fillets 3-mm radius. The shaft rotates and the load is stationary; material is machined from AISI 1050 cold-drawn steel. (b) Bending moment diagram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license