Fox and McDonald's Introduction to Fluid Mechanics
Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 74P

The common thermal polymerase chain reaction (PCR) process requires the cycling of reagents through three distinct temperatures for denaturation (90 − 94°C), annealing (50 − 55°C), and extension (72°C). In continuous-flow PCR reactors, the temperatures of the three thermal zones are maintained as fixed while the reagents are cycled continuously through these zones. These temperature variations induce significant variations in the fluid density, which under appropriate conditions can be used to generate fluid motion. The figure depicts a thermosiphon-based PCR device. The closed loop is filled with PCR reagents. The plan of the loop is inclined at an angle α with respect to the vertical. The loop is surrounded by three heaters and coolers that maintain different temperatures.

Chapter 5, Problem 74P, The common thermal polymerase chain reaction (PCR) process requires the cycling of reagents through

  1. (a) Explain why the fluid automatically circulates in the closed loop in the counterclockwise direction.
  2. (b) What is the effect of the angle α on the fluid velocity?
Blurred answer
Students have asked these similar questions
The temperature of a experimental heated enclosure is being ramped up from 80 to 450°F at the rate of 20°F/min. A thermocouple, embedded in a Thermowell for protection, is being used to monitor the oven temperature. The thermocouple has a time constant of 6 s. ( a ) At t = 10 min, what is the difference between the actual temperature and the temperature indicated by the thermocouple? What is it at 60 min? ( b ) When the thermocouple indicates 450°F, the heater will begin to modulate and maintain the temperature at the desired 450°F. What is the actual oven temperature when the thermocouple first indicates 450°F?
The temperature of an experimental heated enclosure is being ramped up from 80 to 450°F at the rate of 19°F/min. A thermocouple, embedded in a Thermowell for protection, is being used to monitor the oven temperature. The thermocouple has a time constant of 84 s. At t = 10 min, what is the difference between the actual temperature and the temperature indicated by the thermocouple? Final answer in whole number. Please show your complete solution and write readable.
cylindrical fuel element for a gas-cooled nuclear reactor, the heat generation rate within the fuel element due to fission can be approximated by the relation: q(r) = q_0 [1 - (r/a)^2] W/m^3 where a is the radius of the fuel element and q_0 is constant. The boundary surface at r = a is maintained at a uniform temperature T_0. Assuming one-dimensional, steady-state heat flow, develop a relation for the temperature drop from the centerline to the surface of the fuel element. For radius a= 30mm, the thermal conductivity k = 10 W/m middot K and q_0 = 2 times 10^7 W/m^3, calculate the temperature drop from the centerline to the surface.

Chapter 5 Solutions

Fox and McDonald's Introduction to Fluid Mechanics

Ch. 5 - A useful approximation for the x component of...Ch. 5 - A useful approximation for the x component of...Ch. 5 - For a flow in the xy plane, the x component of...Ch. 5 - Consider a water stream from a jet of an...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - For an incompressible flow in the r plane, the r...Ch. 5 - A viscous liquid is sheared between two parallel...Ch. 5 - A velocity field in cylindrical coordinates is...Ch. 5 - Determine the family of stream functions that...Ch. 5 - The stream function for a certain incompressible...Ch. 5 - Determine the stream functions for the following...Ch. 5 - Determine the stream function for the steady...Ch. 5 - Prob. 23PCh. 5 - A parabolic velocity profile was used to model...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - Prob. 27PCh. 5 - A flow field is characterized by the stream...Ch. 5 - In a parallel one-dimensional flow in the positive...Ch. 5 - Consider the flow field given by V=xy2i13y3j+xyk....Ch. 5 - Prob. 31PCh. 5 - The velocity field within a laminar boundary layer...Ch. 5 - A velocity field is given by V=10ti10t3j. Show...Ch. 5 - The y component of velocity in a two-dimensional,...Ch. 5 - A 4 m diameter tank is filled with water and then...Ch. 5 - An incompressible liquid with negligible viscosity...Ch. 5 - Sketch the following flow fields and derive...Ch. 5 - Consider the low-speed flow of air between...Ch. 5 - As part of a pollution study, a model...Ch. 5 - As an aircraft flies through a cold front, an...Ch. 5 - Wave flow of an incompressible fluid into a solid...Ch. 5 - A steady, two-dimensional velocity field is given...Ch. 5 - A velocity field is represented by the expression...Ch. 5 - A parabolic approximate velocity profile was used...Ch. 5 - A cubic approximate velocity profile was used in...Ch. 5 - The velocity field for steady inviscid flow from...Ch. 5 - Consider the incompressible flow of a fluid...Ch. 5 - Consider the one-dimensional, incompressible flow...Ch. 5 - Expand (V)V in cylindrical coordinates by direct...Ch. 5 - Determine the velocity potential for (a) a flow...Ch. 5 - Determine whether the following flow fields are...Ch. 5 - The velocity profile for steady flow between...Ch. 5 - Consider the velocity field for flow in a...Ch. 5 - Consider the two-dimensional flow field in which u...Ch. 5 - Consider a flow field represented by the stream...Ch. 5 - Fluid passes through the set of thin, closely...Ch. 5 - A two-dimensional flow field is characterized as u...Ch. 5 - A flow field is represented by the stream function...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the velocity field given by V=Ax2i+Bxyj,...Ch. 5 - Consider again the viscometric flow of Example...Ch. 5 - The velocity field near the core of a tornado can...Ch. 5 - A velocity field is given by V=2i4xjm/s. Determine...Ch. 5 - Consider the pressure-driven flow between...Ch. 5 - Consider a steady, laminar, fully developed,...Ch. 5 - Assume the liquid film in Example 5.9 is not...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - A linear velocity profile was used to model flow...Ch. 5 - A cylinder of radius ri rotates at a speed ...Ch. 5 - The velocity profile for fully developed laminar...Ch. 5 - Assume the liquid film in Example 5.9 is...Ch. 5 - The common thermal polymerase chain reaction (PCR)...Ch. 5 - A tank contains water (20C) at an initial depth y0...Ch. 5 - For a small spherical particle of styrofoam...Ch. 5 - Use Excel to generate the progression to an...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License