Fox and McDonald's Introduction to Fluid Mechanics
Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 1P

Which of the following sets of equations represent possible three-dimensional incompressible flow cases?

  1. (a) u = 2y2 + 2xz; υ = −2xy + 6x2yz; w = 3x2z2 + x3y4
  2. (b) u = xyzt; υ = −xyzt2; w = z2 (xt2yt)
  3. (c) u = x2 + 2y + z2; υ = x − 2y + z; w = −2xz + y2 + 2z
Expert Solution & Answer
Check Mark
To determine

The set of equation that represent three-dimensional incompressible flow.

Explanation of Solution

Given:

The given set of equations are:

  1. a) u=2y2+2xz;v=2yz+6x2yz;w=3x2z2+x3y4
  2. b) u=xyzt;v=xyzt2;w=z2(xt2yt)
  3. c) u=x2+2y+z2;v=x2y+z;w=2xy+y2+2z

Calculation:

The criteria that must be satisfied for a flow to be incompressible is,

  xu+yv+zw=0

Check the given sets to satisfy the above criteria.

For set (a),

  xu+yv+zw=x(2y2+2xz)+y(2yz+6x2yz)+z(3x2z2+x3y4)=2z+6x2z2z+6x2z=12x2z0

For set (b),

  xu+yv+zw=x(xyzt)+y(xyzt2)+z(z2(xt2yt))=yztxzt2+2z(xt2yt)0

For set (c),

  xu+yv+zw=x(x2+2y+z2)+y(x2y+z)+z(2xy+y2+2z)=2x2+2+2x=0

Hence, of the three only set (c) satisfies the criteria for the incompressible flow.

Thus, the set of equations that represent three-dimensional incompressible flow is u=x2+2y+z2;v=x2y+z;w=2xy+y2+2z

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
04:29
Students have asked these similar questions
THREE DIMENSIONAL ( NEED NEAT HANDWRITTEN SOLUTION ONLY OTHERWISE DOWNVOTE).
In an experiment to determine the force acting on an oval-shaped body, a model is mounted in the test section of a wind tunnel. The test section itself has rectangular cross section with height 2h and width l (into the page). The model spans the entire width of the test section. The model is subject to a steady, uniform, incompressible flow of velocity V₁. The pressure gauge indicates a pressure difference (Ap) between the test section exit (location 2) and the test section entrance (location 1). The velocity profile downstream of the model is shown in the figure. Use the control volume shown. Find the force acting on the model in terms of given quantities V₁, h, l, Ap, and density, p. Ap V AL
1. Stagnation Points A steady incompressible three dimensional velocity field is given by: V = (2 – 3x + x²) î + (y² – 8y + 5)j + (5z² + 20z + 32)k Where the x-, y- and z- coordinates are in [m] and the magnitude of velocity is in [m/s]. a) Determine coordinates of possible stagnation points in the flow. b) Specify a region in the velocity flied containing at least one stagnation point. c) Find the magnitude and direction of the local velocity field at 4- different points that located at equal- distance from your specified stagnation point.

Chapter 5 Solutions

Fox and McDonald's Introduction to Fluid Mechanics

Ch. 5 - A useful approximation for the x component of...Ch. 5 - A useful approximation for the x component of...Ch. 5 - For a flow in the xy plane, the x component of...Ch. 5 - Consider a water stream from a jet of an...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - For an incompressible flow in the r plane, the r...Ch. 5 - A viscous liquid is sheared between two parallel...Ch. 5 - A velocity field in cylindrical coordinates is...Ch. 5 - Determine the family of stream functions that...Ch. 5 - The stream function for a certain incompressible...Ch. 5 - Determine the stream functions for the following...Ch. 5 - Determine the stream function for the steady...Ch. 5 - Prob. 23PCh. 5 - A parabolic velocity profile was used to model...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - Prob. 27PCh. 5 - A flow field is characterized by the stream...Ch. 5 - In a parallel one-dimensional flow in the positive...Ch. 5 - Consider the flow field given by V=xy2i13y3j+xyk....Ch. 5 - Prob. 31PCh. 5 - The velocity field within a laminar boundary layer...Ch. 5 - A velocity field is given by V=10ti10t3j. Show...Ch. 5 - The y component of velocity in a two-dimensional,...Ch. 5 - A 4 m diameter tank is filled with water and then...Ch. 5 - An incompressible liquid with negligible viscosity...Ch. 5 - Sketch the following flow fields and derive...Ch. 5 - Consider the low-speed flow of air between...Ch. 5 - As part of a pollution study, a model...Ch. 5 - As an aircraft flies through a cold front, an...Ch. 5 - Wave flow of an incompressible fluid into a solid...Ch. 5 - A steady, two-dimensional velocity field is given...Ch. 5 - A velocity field is represented by the expression...Ch. 5 - A parabolic approximate velocity profile was used...Ch. 5 - A cubic approximate velocity profile was used in...Ch. 5 - The velocity field for steady inviscid flow from...Ch. 5 - Consider the incompressible flow of a fluid...Ch. 5 - Consider the one-dimensional, incompressible flow...Ch. 5 - Expand (V)V in cylindrical coordinates by direct...Ch. 5 - Determine the velocity potential for (a) a flow...Ch. 5 - Determine whether the following flow fields are...Ch. 5 - The velocity profile for steady flow between...Ch. 5 - Consider the velocity field for flow in a...Ch. 5 - Consider the two-dimensional flow field in which u...Ch. 5 - Consider a flow field represented by the stream...Ch. 5 - Fluid passes through the set of thin, closely...Ch. 5 - A two-dimensional flow field is characterized as u...Ch. 5 - A flow field is represented by the stream function...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the velocity field given by V=Ax2i+Bxyj,...Ch. 5 - Consider again the viscometric flow of Example...Ch. 5 - The velocity field near the core of a tornado can...Ch. 5 - A velocity field is given by V=2i4xjm/s. Determine...Ch. 5 - Consider the pressure-driven flow between...Ch. 5 - Consider a steady, laminar, fully developed,...Ch. 5 - Assume the liquid film in Example 5.9 is not...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - A linear velocity profile was used to model flow...Ch. 5 - A cylinder of radius ri rotates at a speed ...Ch. 5 - The velocity profile for fully developed laminar...Ch. 5 - Assume the liquid film in Example 5.9 is...Ch. 5 - The common thermal polymerase chain reaction (PCR)...Ch. 5 - A tank contains water (20C) at an initial depth y0...Ch. 5 - For a small spherical particle of styrofoam...Ch. 5 - Use Excel to generate the progression to an...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license