Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 51P
Determine whether the following flow fields are irrotational.
- (a) u = 2xy; υ = −x2y
- (b) u = y − x + x2; υ = x + y − 2xy
- (c) u = x2t + 2y; υ = 2x − yt2
- (d) u = −x2 − y2 − xyt; υ = x2 + y2 + xyt
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The system,
dx
dt
is a potential flow.
= -12 + 16x + 3x² - 4x³
True
False
4. The velocity vectors of three flow fileds are given as V, = axĩ + bx(1+1)}+ tk ,
V, = axyi + bx(1+t)j , and V3 = axyi – bzy(1+t)k where coefficients a and b have
constant values. Is it correct to say that flow field 1 is one-, flow filed 2 is two-, and
flow filed 3 is three-dimensional? Are these flow fields steady or unsteady?
A vector field for an ideal fluid is given by F(x, y, z) = (axy − z^ 3 )i + (a − 2)x^ 2 j + (1 − a)xz^2 k
(a) Determine the values of ‘a’ for which the given ideal fluid is irrotational. (b) Verify whether the irrotational vector field is also incompressible.
(c) Obtain the scalar potential φ such that F(x, y, z) = ∇φ.
(d) Plot the given vector field in the domain D given by
D = { (x, y, z) ∈ R ^3 /− 4 ≤ x ≤ 4, −4 ≤ y ≤ 4, −4 ≤ z ≤ 4}.
Chapter 5 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 5 - Which of the following sets of equations represent...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - In an incompressible three-dimensional flow field,...Ch. 5 - In a two-dimensional incompressible flow field,...Ch. 5 - The three components of velocity in a velocity...Ch. 5 - The x component of velocity in a steady,...Ch. 5 - The y component of velocity in a steady...Ch. 5 - The velocity components for an incompressible...Ch. 5 - The radial component of velocity in an...Ch. 5 - A crude approximation for the x component of...
Ch. 5 - A useful approximation for the x component of...Ch. 5 - A useful approximation for the x component of...Ch. 5 - For a flow in the xy plane, the x component of...Ch. 5 - Consider a water stream from a jet of an...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - For an incompressible flow in the r plane, the r...Ch. 5 - A viscous liquid is sheared between two parallel...Ch. 5 - A velocity field in cylindrical coordinates is...Ch. 5 - Determine the family of stream functions that...Ch. 5 - The stream function for a certain incompressible...Ch. 5 - Determine the stream functions for the following...Ch. 5 - Determine the stream function for the steady...Ch. 5 - Prob. 23PCh. 5 - A parabolic velocity profile was used to model...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - Prob. 27PCh. 5 - A flow field is characterized by the stream...Ch. 5 - In a parallel one-dimensional flow in the positive...Ch. 5 - Consider the flow field given by V=xy2i13y3j+xyk....Ch. 5 - Prob. 31PCh. 5 - The velocity field within a laminar boundary layer...Ch. 5 - A velocity field is given by V=10ti10t3j. Show...Ch. 5 - The y component of velocity in a two-dimensional,...Ch. 5 - A 4 m diameter tank is filled with water and then...Ch. 5 - An incompressible liquid with negligible viscosity...Ch. 5 - Sketch the following flow fields and derive...Ch. 5 - Consider the low-speed flow of air between...Ch. 5 - As part of a pollution study, a model...Ch. 5 - As an aircraft flies through a cold front, an...Ch. 5 - Wave flow of an incompressible fluid into a solid...Ch. 5 - A steady, two-dimensional velocity field is given...Ch. 5 - A velocity field is represented by the expression...Ch. 5 - A parabolic approximate velocity profile was used...Ch. 5 - A cubic approximate velocity profile was used in...Ch. 5 - The velocity field for steady inviscid flow from...Ch. 5 - Consider the incompressible flow of a fluid...Ch. 5 - Consider the one-dimensional, incompressible flow...Ch. 5 - Expand (V)V in cylindrical coordinates by direct...Ch. 5 - Determine the velocity potential for (a) a flow...Ch. 5 - Determine whether the following flow fields are...Ch. 5 - The velocity profile for steady flow between...Ch. 5 - Consider the velocity field for flow in a...Ch. 5 - Consider the two-dimensional flow field in which u...Ch. 5 - Consider a flow field represented by the stream...Ch. 5 - Fluid passes through the set of thin, closely...Ch. 5 - A two-dimensional flow field is characterized as u...Ch. 5 - A flow field is represented by the stream function...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the velocity field given by V=Ax2i+Bxyj,...Ch. 5 - Consider again the viscometric flow of Example...Ch. 5 - The velocity field near the core of a tornado can...Ch. 5 - A velocity field is given by V=2i4xjm/s. Determine...Ch. 5 - Consider the pressure-driven flow between...Ch. 5 - Consider a steady, laminar, fully developed,...Ch. 5 - Assume the liquid film in Example 5.9 is not...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - A linear velocity profile was used to model flow...Ch. 5 - A cylinder of radius ri rotates at a speed ...Ch. 5 - The velocity profile for fully developed laminar...Ch. 5 - Assume the liquid film in Example 5.9 is...Ch. 5 - The common thermal polymerase chain reaction (PCR)...Ch. 5 - A tank contains water (20C) at an initial depth y0...Ch. 5 - For a small spherical particle of styrofoam...Ch. 5 - Use Excel to generate the progression to an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. For a flow in the xy-plane, the y-component of velocity is given by v = y2 −2x+ 2y. Find a possible x-component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? 2. The x-component of velocity in a steady, incompressible flow field in the xy-plane is u = A/x. Find the simplest y-component of velocity for this flow field.arrow_forward1. A flow in the x-y plane is given by the following velocity field: u =3 and v=6m/s for 0arrow_forward2- The velocity components for an incompressible steady flow field are u= (A x* +z) and v-B (xy + yz). Determine the z component of velocity for steady flow.arrow_forwarda. Derive an equation for the material acceleration vector.b. Obtain the vorticity vector for the velocity field.c. Is the flow rotational or irrotational? Show through your derivation.d. Is the flow incompressible or compressible? Show through your derivation.arrow_forwardConsider the flow field shown. Coordinates are measured in meters. For the particle that passes through the point ðx, yÞ = ð1, 2Þ at the instant t = 0, plot the pathline during the time interval from t = 0 to 3 s. Compare this pathline with the streakline through the same point at the instant t=3s.arrow_forwardPlease asaparrow_forwardy x = r cos 0 V = Or y = r sine r = √x² + y² χ Flow in "solid body rotation" acts like a solid spinning around an axis. The streamlines are circular, the velocity is purely tangential, and the velocity magnitude is V = r, where is the angular velocity (positive counter-clockwise) and r is the radius. (a) Express the velocity vector V as a function of x and y. (b) Calculate the curl of the velocity vector V × V, indicating clearly the direction of the resulting vector.arrow_forward1. Find the equation of a streamline that passes through the point P(1, 4, -2) in the field E=2e5x[y(5x+1)ax+xay]E=2e5x[y(5x+1)ax+xay].arrow_forwardIf the velocity field, V=3y2 i. Which of the following is NOT TRUE? Select one: The flow is steady The flow is irrotational The flow is horizontal d. The flow is incompressible Consider the velocity field, V=(x2+y2-4)i+(xy-y)j. Which of the following is not a stagnation point? A stagnation point is a point in the velocity field where the velocity is 0. (2, 0) (-2, 0) (1, √3) (-1, √3)arrow_forwardUrgentarrow_forwardThe velocity vector in a flow is given by: V = 3xi + 4yj – (7z-1)k Determine the equation passing through a point L(2, 1, 3). * Your answer Вack Next Never submit passwords through Google Forms.arrow_forwardFast pls solve this question correctly in 5 min pls I will give u like for sure Siniarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license