Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 77P
For a small spherical particle of styrofoam (density = 16 kg/m3) with a diameter of 5 mm falling in air, the drag is given by FD = 3πµVd, where µ is the air viscosity and V is the sphere velocity. Derive the differential equation that describes the motion. Using the Euler method, find the maximum speed starting from rest and the time it takes to reach 95% of this speed. Plot the speed as a function of time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The aerodynamic drag of a new sports car is to be predicted at a speed of 60.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-third scale model of the car to test in a wind tunnel. The temperature of the wind tunnel air is also 25°C. The drag force is measured with a drag balance, and the moving belt is used to simulate the moving ground (from the car’s frame of reference). Determine how fast the engineers should run the wind tunnel to achieve similarity between the model and the prototype.
The aerodynamic drag of a new sports car is to be predicted at a speed of 60.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-third scale model of the car to test in a wind tunnel. The temperature of the wind tunnel air is also 25°C. The drag force is measured with a drag balance, and the moving belt is used to simulate the moving ground (from the car’s frame of reference). Determine how fast the engineers should run the wind tunnel to achieve similarity between the model and the prototype.
1. The aerodynamic drag of a Formula 1 car is to be predicted at a speed of 100 km/hr
in an environment where air temperature is 25°C and the corresponding kinematic
viscosity of air is v=1.60×105 m²/s. Automotive engineers build a 1/4 scale model of
the car to test in a wind tunnel, where the air temperature is 10°C and kinematic
viscosity of air is v=1.46×105 m²/s. A drag balance is used to measure the drag, and
the moving belt is used to simulate the moving ground. Determine the speed of the
wind tunnel that the engineers must run in order to achieve similarity between the
model and prototype.
(Ans: 365 km/hr).
(Acknowledgement:http://www.invetr.com/uploads/2/1/8/2/21829402/565543954_orig.jpg)
Chapter 5 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 5 - Which of the following sets of equations represent...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - In an incompressible three-dimensional flow field,...Ch. 5 - In a two-dimensional incompressible flow field,...Ch. 5 - The three components of velocity in a velocity...Ch. 5 - The x component of velocity in a steady,...Ch. 5 - The y component of velocity in a steady...Ch. 5 - The velocity components for an incompressible...Ch. 5 - The radial component of velocity in an...Ch. 5 - A crude approximation for the x component of...
Ch. 5 - A useful approximation for the x component of...Ch. 5 - A useful approximation for the x component of...Ch. 5 - For a flow in the xy plane, the x component of...Ch. 5 - Consider a water stream from a jet of an...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - For an incompressible flow in the r plane, the r...Ch. 5 - A viscous liquid is sheared between two parallel...Ch. 5 - A velocity field in cylindrical coordinates is...Ch. 5 - Determine the family of stream functions that...Ch. 5 - The stream function for a certain incompressible...Ch. 5 - Determine the stream functions for the following...Ch. 5 - Determine the stream function for the steady...Ch. 5 - Prob. 23PCh. 5 - A parabolic velocity profile was used to model...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - Prob. 27PCh. 5 - A flow field is characterized by the stream...Ch. 5 - In a parallel one-dimensional flow in the positive...Ch. 5 - Consider the flow field given by V=xy2i13y3j+xyk....Ch. 5 - Prob. 31PCh. 5 - The velocity field within a laminar boundary layer...Ch. 5 - A velocity field is given by V=10ti10t3j. Show...Ch. 5 - The y component of velocity in a two-dimensional,...Ch. 5 - A 4 m diameter tank is filled with water and then...Ch. 5 - An incompressible liquid with negligible viscosity...Ch. 5 - Sketch the following flow fields and derive...Ch. 5 - Consider the low-speed flow of air between...Ch. 5 - As part of a pollution study, a model...Ch. 5 - As an aircraft flies through a cold front, an...Ch. 5 - Wave flow of an incompressible fluid into a solid...Ch. 5 - A steady, two-dimensional velocity field is given...Ch. 5 - A velocity field is represented by the expression...Ch. 5 - A parabolic approximate velocity profile was used...Ch. 5 - A cubic approximate velocity profile was used in...Ch. 5 - The velocity field for steady inviscid flow from...Ch. 5 - Consider the incompressible flow of a fluid...Ch. 5 - Consider the one-dimensional, incompressible flow...Ch. 5 - Expand (V)V in cylindrical coordinates by direct...Ch. 5 - Determine the velocity potential for (a) a flow...Ch. 5 - Determine whether the following flow fields are...Ch. 5 - The velocity profile for steady flow between...Ch. 5 - Consider the velocity field for flow in a...Ch. 5 - Consider the two-dimensional flow field in which u...Ch. 5 - Consider a flow field represented by the stream...Ch. 5 - Fluid passes through the set of thin, closely...Ch. 5 - A two-dimensional flow field is characterized as u...Ch. 5 - A flow field is represented by the stream function...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the velocity field given by V=Ax2i+Bxyj,...Ch. 5 - Consider again the viscometric flow of Example...Ch. 5 - The velocity field near the core of a tornado can...Ch. 5 - A velocity field is given by V=2i4xjm/s. Determine...Ch. 5 - Consider the pressure-driven flow between...Ch. 5 - Consider a steady, laminar, fully developed,...Ch. 5 - Assume the liquid film in Example 5.9 is not...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - A linear velocity profile was used to model flow...Ch. 5 - A cylinder of radius ri rotates at a speed ...Ch. 5 - The velocity profile for fully developed laminar...Ch. 5 - Assume the liquid film in Example 5.9 is...Ch. 5 - The common thermal polymerase chain reaction (PCR)...Ch. 5 - A tank contains water (20C) at an initial depth y0...Ch. 5 - For a small spherical particle of styrofoam...Ch. 5 - Use Excel to generate the progression to an...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
ICA 10-6
The worksheet provided was designed to calculate the total pressure felt by an object submerged in a f...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Represent each of the following combinations of units in the correct SI form: (a) kN/s, (b) Mg/mN, and (c) MN/(...
Engineering Mechanics: Statics
The magnitude of vector force F (F) and its direction θ.
Engineering Mechanics: Statics & Dynamics (14th Edition)
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
The rate of heat addition and the magnitude of kinetic and potential energy change.
Introduction to Heat Transfer
3.22 Calculate the moment of the 550-lb force about point O shown without using Varignon’s theorem. Make a simi...
Applied Statics and Strength of Materials (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Wind blows and pasts a banner causes it to flutter. The fluttering frequency f is a function of the wind speed V, the air density ρ, the acceleration of gravity g, the length of the banner L and the “area density” of the flag material ρA (with dimensions of ML-2 ). In order to estimate the flutter frequency of a large banner with L = 40 ft in a V = 30 ft/s wind, a small banner with L = 4 ft is to be tested in a wind tunnel. (a) What is the area density of the small banner when the large banner has area density of 0.006 slugs/ft2? (b) What should the wind tunnel velocity be to test the small model? (c) It has been shown that the small banner flutters at 6 s-1 when the same area density and wind tunnel velocity are used in parts (a) and (b). In this case, what is the fluttering frequency of the large banner?arrow_forwardPlease solve in 30 minutearrow_forward1. (a) The motion of a floating vessel through the surrounding fluid results in a drag force D which is thought to depend upon the vessel's speed v, its length I, the density p and dynamic viscosity μ of the fluid and the acceleration due to gravity g. Show that:- D = pv²1² (1) (b) In order to predict the drag on a full scale 50m long ship traveling at 7m/s in sea water at 5°C of density 1027.7225 kg/m³ and viscosity 1.62 x 103 Pa.s, a model 3m long is tested in a liquid of density 805 kg/m³. What speed does the model need to be tested at and what is the required viscosity of the liquid?arrow_forward
- Please give a detailed solution , Looking for a correct answer. Don't use chatgptarrow_forwardA student wants to estimate drag force on a golf ball of diameter D moving in air at a speed of U at atmospheric conditions. The student has access to a wind-tunnel and develops a replica of the ball that is 5 times smaller in diameter sets the wind speed 5 times larger than the actual golf ball. Compared to the force on the replica, the estimated drag force on the actual golf ball will bearrow_forwardX = 1arrow_forward
- Derive the expression for the drag on a submerged torpedo. The parameters are the size of torpedo, L, the velocity, V, the viscosity, and density of water, u and p respectively.arrow_forwardA model of an aircraft is being tested in a wind-tunnel. If the model was replaced by one that is half the size but is otherwise identical, what would be the ratio of the drag on the large model to the drag on the small model for exactly the same flow conditions. Give your answer to two decimal places. The model is in a region where drag coefficent is independent of Reynolds number.arrow_forwardThe wind flutter on the wing of a newly proposed jet fighter is given by the following 1st order differential equation: dy/dx = 2yx With the Boundary Condition: y(0) = 1 (remember this means that y = 1 when x = 0) Determine the vertical motion (y) in terms of the span (x) of the wing. The frequency of fluctuations of the wing at mach 2 is given by the non-homogenous 2nd order differential equation: y'' + 3y' - 10y = 100x With the boundary conditions: y(0) = 1 and y(1) = 0 (i.e., y = 1 when x = 0 and y = 0 when x = 1) By solving the homogenous form of this equation, complete the analysis and determine the amplitude (y) of vibration of the wing tip at mach 2. Critically evaluate wing flutter and fluctuation frequency amplitude determined by solving the two differential equations above.arrow_forward
- = 3570 T AC =144 Example: 1.5 ft It is desired to determine the drag force at a given speed on a prototype sailboat hull. A model is placed in a test channel and three cables are used to align its bow on the channel centerline. For a given speed, the tension is 40 lb in cable AB and 60 lb in cable AE. Flow 4 ft Determine the drag force exerted on the hull and the tension in cable AC. Choc ug the h- as the free hod- DApress thearrow_forwardProblem The drag force Dp acting on a spherical particle that falls very slowly through a viscous fluid is a function of the particle diameter D, the particle velocity V, and the fluid viscosity µ. Find Determine, with the aid of dimensional analysis, how the drag depends on the particle velocity. Stokes flowarrow_forwardWe want to predict the drag force on a remote-control airplane as it flies through air having a density of 1.21 kg/m³ and a viscosity of 1.76x10- Pa-s. The airplane's fuselage has a diameter of 200 mm and the airplane will fly through air at a speed of 32 m/s. A model of the airplane's fuselage will be tested in a pressurized wind tunnel. The diameter of the model is 75 mm and the density and viscosity of the air in the wind tunnel are 3.00 kg/m³ and 1.82× 10-5 Pa-s, respectively. a) The diameter of the airplane's fuselage will be used to define the Reynolds number Re, for the flow around the fuselage. Compute the Reynolds number for the flow around the airplane's fuselage (answer: Re, = 4.40x 10'). b) Find the speed of the air that should be used to test a model of the fuselage in the wind tunnel to correctly model dynamic conditions (answer: 35.6 m/s). c) The model is tested in the wind tunnel at four speeds that bracket the speed computed above. The measured drag forces on the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY