![Precalculus: Mathematics for Calculus - 6th Edition](https://www.bartleby.com/isbn_cover_images/9780840068071/9780840068071_largeCoverImage.gif)
a.
Sketch a
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 2P
The scatter plot is
Explanation of Solution
Given: A set of the data is,
Calculation:
Let’s take a given data set sketch a scatter plot using MATLAB.
The function is using in the MATLAB to sketch a scatter plot is,
Program:
clc clear close all t=[0 25 50 75 100 125 150 175 200 225 250 275 300 325 350]; y=[190 175 155 125 110 95 105 120 140 165 185 200 195 185 165]; scatter(t,y,'linewidth',1.25'); set(gca,'Linewidth',1.2,'Fontsize',12); xlabel('t'); ylabel('y') axis square axis tight
Query:
- First, we have defined the given data sets.
- Then using a function “scatter (t, y)” sketch a scatter plot.
b.
Calculate the cosine function using given data set.
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 2P
The cosine function is,
Explanation of Solution
Given: A set of the data is,
Calculation:
First, we have to write a general equation of the cosine function,
Then, calculate the vertical shifting as,
Calculate the amplitude as,
Then, Calculate the phase shift as,
The value of c is,
Put all the value into the equation (1) then,
Program:
clc clear close all t=[0 25 50 75 100 125 150 175 200 225 250 275 300 325 350]; y=[190 175 155 125 110 95 105 120 140 165 185 200 195 185 165]; b=(1/2)*(max(y)+min(y)); a=(1/2)*(max(y)-min(y)); w=2*pi/max(t); idx=find(y==max(y)); c=t(idx); f=(a*cos(w*(t-c)))+b; scatter(t,y,'linewidth',1.25'); set(gca,'Linewidth',1.2,'Fontsize',12); xlabel('t'); ylabel('y') axis square axis tight
Query:
- First, we have defined the given data sets.
- Then calculate the value of b, a, w, and c.
- Put all the values into the equation of cosine function and get the solution.
c.
Sketch a graph of the function which is found in part (b).
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 2P
The solution is,
Explanation of Solution
Given: A set of the data is,
Calculation:
Sketch a graph of the cosine function in MATLAB using function “plot (f, t)”.
The function is found in part (b) is,
Program:
clc clear close all t=[0 25 50 75 100 125 150 175 200 225 250 275 300 325 350]; y=[190 175 155 125 110 95 105 120 140 165 185 200 195 185 165]; b=(1/2)*(max(y)+min(y)); a=(1/2)*(max(y)-min(y)); w=2*pi/max(t); idx=find(y==max(y)); c=t(idx); f=(a*cos(w*(t-c)))+b; scatter(t,y,'linewidth',1.25'); hold on plot(t,f,'linewidth',1.25'); set(gca,'Linewidth',1.2,'Fontsize',12); xlabel('t'); ylabel('y') axis square axis tight
Query:
- First, we have defined the given data sets.
- Then calculate the value of b, a, w, and c.
- Put all the values into the equation of cosine function and get the solution.
- Then sketch a graph.
d.
Calculate the sine function using given data set.
d.
![Check Mark](/static/check-mark.png)
Answer to Problem 2P
The cosine function is,
Explanation of Solution
Given: A set of the data is,
Calculation:
First, we have to write a general equation of the cosine function,
Then, calculate the vertical shifting as,
Calculate the amplitude as,
Then, Calculate the phase shift as,
The value of c is,
Put all the value into the equation (1) then,
Program:
clc clear close all t=[0 25 50 75 100 125 150 175 200 225 250 275 300 325 350]; y=[190 175 155 125 110 95 105 120 140 165 185 200 195 185 165]; b=(1/2)*(max(y)+min(y)); a=(1/2)*(max(y)-min(y)); w=2*pi/max(t); idx=find(y==max(y)); c=t(idx); f=(a*sin(w*(t+c)))+b;
Query:
- First, we have defined the given data sets.
- Then calculate the value of b, a, w, and c.
- Put all the values into the equation of cosine function and get the solution.
e.
Compare the results from part (b) and (c).
e.
![Check Mark](/static/check-mark.png)
Answer to Problem 2P
Using reduction relation, the graph of the given data is,
Explanation of Solution
Given: the reduction formula,
Calculation:
As we can see in part (d) the sine function is,
Where,
Then rewrite the function as,
Simplify the above function and sketch a graph.
Program:
clc clear close all t=[0 25 50 75 100 125 150 175 200 225 250 275 300 325 350]; y=[190 175 155 125 110 95 105 120 140 165 185 200 195 185 165]; b=(1/2)*(max(y)+min(y)); a=(1/2)*(max(y)-min(y)); w=2*pi/max(t); idx=find(y==max(y)); c=t(idx); f=(a*cos(w*(t+c)-pi/2))+b; scatter(t,y,'linewidth',1.25'); hold on plot(t,f,'linewidth',1.25'); set(gca,'linewidth',1.2,'fontsize',12); xlabel('t'); ylabel('y') axis square axis tight
Query:
- First, we have defined the given data sets.
- Then calculate the value of b, a, w, and c.
- Then using reduction relation redefine the function.
- Sketch a graph.
Chapter 5 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- 3) If a is a positive number, what is the value of the following double integral? 2a Love Lv 2ay-y² .x2 + y2 dadyarrow_forward16. Solve each of the following equations for x. (a) 42x+1 = 64 (b) 27-3815 (c) 92. 27² = 3-1 (d) log x + log(x - 21) = 2 (e) 3 = 14 (f) 2x+1 = 51-2xarrow_forward11. Find the composition fog and gof for the following functions. 2 (a) f(x) = 2x+5, g(x) = x² 2 (b) f(x) = x²+x, g(x) = √√x 1 (c) f(x) = -1/2) 9 9(x) = х = - Xarrow_forward
- practice problem please help!arrow_forward13. A restaurant will serve a banquet at a cost of $20 per person for the first 50 people and $15 for person for each additional person. (a) Find a function C giving the cost of the banquet depending on the number of people p attending. (b) How many people can attend the banquet for $2000?arrow_forwardAlt Fn Ctrl 12. Find functions f and g such that h(x) = (fog)(x). (a) h(x) = (x² + 2)² x+1 (b) h(x) = 5 3arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)