Concept explainers
Consider the general form of the Reynolds transport theorem (RTT) given by
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Fluid Mechanics: Fundamentals and Applications
- In plane stagnation flow, an incompressible fluid occupying the space y>0 has one velocity component given by Vx-x. The flow is two-dimensional and steady, such that V₂=0 and nothing depends on z or time t. (a) Use the continuity equation to determine Vy(x,y), given that Vy(x,0) =0. (This condition for Vy corresponds to the plane y=0 being an impenetrable boundary.) (b) is arbitrary, so you may set Y=0 at any convenient location.) Determine the stream function for this flow, (x,y). (The absolute value ofarrow_forwardConsider the general form of the Reynolds transport theorem (RTT) given by dBsys / dt = d/dt ∫CV ρb dV +∫CS ρbV-› r·n-› dAwhere V-›r is the velocity of the fluid relative to the control surface. Let Bsys be the mass m of a closed system of fluid particles. We know that for a system, dm/dt = 0 since no mass can enter or leave the system by definition. Use the given equation to derive the equation of conservation of mass for a control volume.arrow_forwardA stream function is given by = 4x – 3y. The resultant velocity at any point isarrow_forward
- You are given the velocity profile within a thin layer of liquid, draining from an inclined plane as vx = v0 (ay/h − y2/h2), where v0 is the surface velocity and a is a constant that needs to be determined. The height of the liquid film h = 2 cm and the flow rate is 1.8liters/minute. The plane has width 10 cm into the paper.(i). Determine the constant a by applying a suitable boundary condition at y = h.arrow_forwardb) A Newtonian fluid flows in an annular space created by a concentric pipe of radius R, and a rod of radius R;, as shown in Figure Q1(b). The rod is moving at a constant velocity V, while the pipe is stationary. The flow is steady, laminar and incompressible and there is no forced pressure gradient driving the flow. Assuming the velocity components in the radial and tangential directions are zero and ignoring the effects of gravity, derive an expression for the velocity field in the annular space. R. R: Figure Q1(b)arrow_forwardThe flow between two horizontal infinite parallel plates is a two-dimension, steady-state, incompressible and fully- developed flow. The distance between the plates is h m. The bottom plate is stationary and the top plate velocity is U. m/s in the x-direction. The flow is driven by the top moving plate and there is, therefore, no pressure gradient in the direction of the flow. Velocity in the y-direction, v = 0. Note: Align the x-axis to the bottom wall. Use the x-momentum equation to show that the velocity profile equation is (a) u(y) = ay + b and find the values of a and b. Use the energy equation to derive the temperature distribution T(y) for the flow if the surface temperature and temperature gradient on the bottom plate are both zero. (b)arrow_forward
- Fluid Dynamics questionarrow_forward3. A circular cylinder of radius a is fitted with two pressure sensors to measure pressure at 0 = 180° and at 150°. The intent is to use this cylinder as a stream velocimeter, i.e. a device to determine the velocity of a stream by measuring the pressures at the two taps. The fluid is incompressible with a density of p. Figure for Part (a) U Figure for Part (b) 30 a) Using potential flow approximation, derive a formula for calculating U from the measured pressure difference at the two pressure taps. Note that for accurate measurement, the velocimeter must be aligned to have one of the taps exactly facing the stream as shown in the figure. (Ans: 2|Aptaps|/p ) b) Suppose the velocimeter has been misaligned by ổ degrees so that the two pressure taps are now at 180° + 8 and 150° + 8. Derive an expression for the percent error in stream velocity measurement. Then, calculate the error for 8 = 5°,10° and –10°. (Ans: [2/(sin2(150 + 8) – sin²(180 + 8) )– 1] × 100 )arrow_forwardOil flows between two parallel plates (Fig. 8.3), one of which is at rest and the other moves with a velocity U. If the pressure is decreasing in the direction of the flow at a rate of 0.10 lbf/ft² per/foot, the dynamic viscosity is 10-31bf-sec/ft2, the spacing of the plates is 2 in. and the volumetric flow per unit width is 0.15 ft2/sec, what is the velocity U?arrow_forward
- navier stokesarrow_forwardConsider the flow of a compressible fluid in a conduit under steady state and isothermal conditions. The flow density changes from point a to point b that is located downstream of point a. Compare the flow Reynolds number at these points and specify whether Rea > Reb, Rea = Reb, or Rea < Reb.arrow_forwardThe wind flutter on the wing of a newly proposed jet fighter is given by the following 1st order differential equation: dy/dx = 2yx With the Boundary Condition: y(0) = 1 (remember this means that y = 1 when x = 0) Determine the vertical motion (y) in terms of the span (x) of the wing. The frequency of fluctuations of the wing at mach 2 is given by the non-homogenous 2nd order differential equation: y'' + 3y' - 10y = 100x With the boundary conditions: y(0) = 1 and y(1) = 0 (i.e., y = 1 when x = 0 and y = 0 when x = 1) By solving the homogenous form of this equation, complete the analysis and determine the amplitude (y) of vibration of the wing tip at mach 2. Critically evaluate wing flutter and fluctuation frequency amplitude determined by solving the two differential equations above.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY