Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 94P
To determine
The angular momentum for a control volume.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The left field wall at a baseball park is 320 feet down the third base line from home plate; the wall itself is 37 feet high. A batted ball must clear the wall to be a home run. Suppose a ball leaves the bat,
3 feet off the ground, at an angle of 45°. Use g = 32 ft/sec as the acceleration due to gravity and ignore any air resistance. Complete parts (a) through (d).
(a) Find parametric equations that model the position of the ball as a function of time. Choose the correct answer below.
x= (Vo cos 45) t, y = - 16t + (Vo sin 45) t+3
x= (Vo sin 45) t, y = 16t - (Vo cos 45) t+ 3
x= (Vo cos 45) t, y = - 32t + (Vo sin 45)t+3
x= (Vo sin 45) t, y = 32t - (vo cos 45)t+3
(b) What is the maximum height of the ball if it leaves the bat with a speed of 75 miles per hour? Give your answer in feet.
The maximum height of the ball is feet.
(Type an integer or decimal rounded to two decimal places as needed.)
(c) What is the ball's horizontal distance from home plate at its maximum height? Give your…
As we learned, Bernoulli's equation is not to be used in many situations. Let's say you are examining changes between two points in a flow.
Which ONE of these scenarios could you appropriately use Bernoulli's equation on?
O A turbine is situated between the two points
There are large changes in kinetic energy between the two points
The mass flow rate between the two points changes with time
There are large changes in density between the two points
There are large viscous losses between the two points
QUESTION 10
A 12 cm diameter jet of air strikes a plate positioned normal to the flow, with all air deflected away parallel to the plate. If the air flows at a
speed of 20 m/s, what is the force needed to held the plate in place? Do not use a linear momentum correction factor.
O 0.272 N
10.9 N
4510 N
5.45 N
0.340 N
d²u
dy²
pg where g is the acceleration due to gravity
H
Chapter 4 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 4 - What does the word kinematics mean? Explain what...Ch. 4 - Briefly discuss the difference between derivative...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - -5 A steady, two-dimensional velocity field is...Ch. 4 - Consider steady flow of water through an...Ch. 4 - What is the Eulerian description of fluid motion?...Ch. 4 - Is the Lagrangian method of fluid flow analysis...Ch. 4 - A stationary probe is placed in a fluid flow and...Ch. 4 - A tiny neutrally buoyant electronic pressure probe...
Ch. 4 - Define a steady flow field in the Eulerian...Ch. 4 - Is the Eulerian method of fluid flow analysis more...Ch. 4 - A weather balloon is hunched into the atmosphere...Ch. 4 - A Pilot-stalk probe can often be seen protruding...Ch. 4 - List at least three oiler names for the material...Ch. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - For the velocity field of Prob. 4-6, calculate the...Ch. 4 - Consider steady flow of air through the diffuser...Ch. 4 - For the velocity field of Prob. 4-21, calculate...Ch. 4 - A steady, incompressible, two-dimensional (in the...Ch. 4 - The velocity field for a flow is given by...Ch. 4 - Prob. 25CPCh. 4 - What is the definition of a timeline? How can...Ch. 4 - What is the definition of a streamline? What do...Ch. 4 - Prob. 28CPCh. 4 - Consider the visualization of flow over a 15°...Ch. 4 - Consider the visualization of ground vortex flow...Ch. 4 - Consider the visualization of flow over a sphere...Ch. 4 - Prob. 32CPCh. 4 - Consider a cross-sectional slice through an array...Ch. 4 - A bird is flying in a room with a velocity field...Ch. 4 - Conversing duct flow is modeled by the steady,...Ch. 4 - The velocity field of a flow is described by...Ch. 4 - Consider the following steady, incompressible,...Ch. 4 - Consider the steady, incompressible,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - The velocity field for a line some in the r plane...Ch. 4 - A very small circular cylinder of radius Rtis...Ch. 4 - Consider the same two concentric cylinders of...Ch. 4 - The velocity held for a line vartex in the r...Ch. 4 - Prob. 47PCh. 4 - Name and briefly describe the four fundamental...Ch. 4 - Prob. 49CPCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Using the results of Prob. 4—57 and the...Ch. 4 - Converging duct flow (Fig. P4—16) is modeled by...Ch. 4 - Prob. 60PCh. 4 - For the velocity field of Prob. 4—60, what...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Prob. 67PCh. 4 - Consider the steady, incompressible,...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A cylindrical lank of water rotates in solid-body...Ch. 4 - Prob. 75PCh. 4 - A cylindrical tank of radius rrim= 0.354 m rotates...Ch. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - For the Couette flow of Fig. P4—79, calculate the...Ch. 4 - Combine your results from Prob. 4—80 to form the...Ch. 4 - Consider a steady, two-dimensional, incompressible...Ch. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Consider the following steady, three-dimensional...Ch. 4 - Prob. 85PCh. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Briefly explain the purpose of the Reynolds...Ch. 4 - Prob. 88CPCh. 4 - True or false: For each statement, choose whether...Ch. 4 - Consider the integral ddtt2tx2. Solve it two ways:...Ch. 4 - Prob. 91PCh. 4 - Consider the general form of the Reynolds...Ch. 4 - Consider the general form of the Reynolds...Ch. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - The velocity field for an incompressible flow is...Ch. 4 - Consider fully developed two-dimensional...Ch. 4 - For the two-dimensional Poiseuille flow of Prob....Ch. 4 - Combine your results from Prob. 4—100 to form the...Ch. 4 - Prob. 103PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 116PCh. 4 - Based on your results of Prob. 4—116, discuss the...Ch. 4 - Prob. 118PCh. 4 - In a steady, two-dimensional flow field in the...Ch. 4 - A steady, two-dimensional velocity field in the...Ch. 4 - A velocity field is given by u=5y2,v=3x,w=0 . (Do...Ch. 4 - The actual path traveled by an individual fluid...Ch. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Water is flowing in a 3-cm-diameter garden hose at...Ch. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - An array of arrows indicating the magnitude and...Ch. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - A steady, two-dimensional velocity field is given...Ch. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- EXAMPLE Leaking Tank. Outflow of Water Through a Hole (Torricelli's Law) This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a cylindrical tank with a hole at the bottom. You are asked to find the height of the water in the tank at any time if the tank has diameter 2 m, the hole has diameter 1 cm, and the initial height of the water when the hole is opened is 2.25 m. When will the tank be empty? 2.20 M Water level asime Outiine walls 200 200 30t .00- 50- D 10000 30000 tebe Revelion 50000arrow_forwardFor the flow of a viscous fluid, with the velocity V = f(x)g(y)h(z)i (where f, g, h are arbitrary functions), the following conditions are given: . The flow is adiabatic. • The quantities v = 2 and 3 = $ are constants. • The velocity circulation is conserved for the flow, irrespective of the values of vand 3. What is the general solution for the functions f, g, h?arrow_forwardfluid mechanicsarrow_forward
- In plane stagnation flow, an incompressible fluid occupying the space y>0 has one velocity component given by Vx-x. The flow is two-dimensional and steady, such that V₂=0 and nothing depends on z or time t. (a) Use the continuity equation to determine Vy(x,y), given that Vy(x,0) =0. (This condition for Vy corresponds to the plane y=0 being an impenetrable boundary.) (b) is arbitrary, so you may set Y=0 at any convenient location.) Determine the stream function for this flow, (x,y). (The absolute value ofarrow_forwardB1arrow_forwardThe wind flutter on the wing of a newly proposed jet fighter is given by the following 1st order differential equation: dy/dx = 2yx With the Boundary Condition: y(0) = 1 (remember this means that y = 1 when x = 0) Determine the vertical motion (y) in terms of the span (x) of the wing. The frequency of fluctuations of the wing at mach 2 is given by the non-homogenous 2nd order differential equation: y'' + 3y' - 10y = 100x With the boundary conditions: y(0) = 1 and y(1) = 0 (i.e., y = 1 when x = 0 and y = 0 when x = 1) By solving the homogenous form of this equation, complete the analysis and determine the amplitude (y) of vibration of the wing tip at mach 2. Critically evaluate wing flutter and fluctuation frequency amplitude determined by solving the two differential equations above.arrow_forward
- In this question, assume the "additional displacement" is in the positive u direction. A mass weighing 16 lbs stretches a spring 8 inches. The mass is in a medium that exerts a viscous resistance of 1 lbs when the mass has a velocity of 2 ft/sec. Suppose the object is displaced an additional 5 inches and released. Find an equation for the object's displacement, u(t), in feet after t seconds. u(t) =arrow_forwardYou are doing a problem that requires Reynold's Transport Theorem with Conservation of Mass. You carefully write the equation and then on the second line you write: 0 = v3 A3 - Svị dA1 + f vzdA2 What statements in the question or assumptions you make would lead you to this simplification? Mark all that apply. The flow is steady. Newtonian Fluid Incompressible fluid. Inviscid fluid. Inlets have uniform flow. Exits have uniform flow. Velocity is only in the x-direction.arrow_forwardFlow through the converging nozzle in Fig. P4.2 can be approximated by the one-dimensional velocity Р4.2 distribution 2x U = Vol 1 + V - 0 wz (a) Find a general expression for the fluid acceleration in the nozzle. (b) For the specific case Vo in, compute the acceleration, in g's, at the entrance and at 10 ft/s and L = 6 the exit. Vo u = 3Vo * = L Р4.2 x = 0arrow_forward
- By an inkjet printerthe diameter (d) of the points created, the dynamic of the inkviscosity (µ), density (ρ), surface tension (σ), nozzlediameter (D), the distance of the nozzle from the paper surface (L) andink jet velocity is thought to depend on V.Get an expression to characterize the behavior of the ink jetplease.arrow_forwardAn incompressible liquid flows along a pipe as shown. The constriction in the pipe reduces its diameter from 4.0 cm to 2.0 cm. Aj A2 Where the pipe is wide, the water velocity, v1 = 8.0 m/s. The velocity of the water, V2, at the narrow end is nearly 2.0 m/s 16 m/s 4.0 m/s 32 m/sarrow_forwardAn incompressible fluid of density ρ and viscosity μ flows down a plane inclined at an angle α.Assume constant gravitational acceleration downward, fully-developed flow, constant pressure inthe air outside the fluid, and zero stress exerted by the air on the fluid. i) Starting from the incompressible Navier-Stokes equations, derive the differential equation andboundary conditions that govern the velocity u(y). ii) Solve the equation from the previous part for u(y). iii) Using your solution, calculate the following quantities: The mass flow rate (per unit depth) down the channel. The vorticity vector, ~ξ, and rate-of-strain tensor, epsilon at a point (x, y) in the channel. The shear stress exerted by the fluid on the bottom wall The viscous force in the fluid iv) Consider a control volume consisting of a section of length L of the channel. Demonstratethat the conservation of x momentum holds for this control volume by integrating appropriatequantities over its perimeter and…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license