Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 89CP
True or false: For each statement, choose whether the statement is true or false and discuss your answer briefly.
(a) The Reynolds transport theorem is useful for transforming conservation equations from their naturally occurring control volume forms to their system forms.
(b) The Reynolds transport theorem is applicable only to nondeforming control volumes.
(c) The Reynolds transport theorem can be applied to both steady and unsteady flow fields.
(d) The Reynolds transport theorem can be applied to both scalar and
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
D
Eulerian
A
description
Dt
System
analysis
В
RTT
Fill in th blanks (A, B),
|is related through the material derivative to an Eulerian description. Systems analysis is related to
analysis using the reynolds transport theorem.
(b)
In two dimensional boundary layer, shear stress was changed linearly from
the solid surface toward y-axis until it reach the value of zero at y = ở.
Based on Table 2 and setting given to you;
(i)
Derive the equation of displacement thickness and momentum
thickness using Von Karman Approximation Method ; and
(ii)
Determine the accuracy of this method in determining the value of
displacement thickness and momentum thickness.
C5
Table 2: Equation of Velocity Profile
Setting
Equation
wU = 2y/8 - (y/S²
1
For each statement, choose whether the statement is true or false, and discuss your answer briefly. (a) The velocity potential function can be defined for threedimensional flows. (b) The vorticity must be zero in order for the stream function to be defined. (c) The vorticity must be zero in order for the velocity potential function to be defined. (d) The stream function can be defined only for two-dimensional flow fields.
Chapter 4 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 4 - What does the word kinematics mean? Explain what...Ch. 4 - Briefly discuss the difference between derivative...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - -5 A steady, two-dimensional velocity field is...Ch. 4 - Consider steady flow of water through an...Ch. 4 - What is the Eulerian description of fluid motion?...Ch. 4 - Is the Lagrangian method of fluid flow analysis...Ch. 4 - A stationary probe is placed in a fluid flow and...Ch. 4 - A tiny neutrally buoyant electronic pressure probe...
Ch. 4 - Define a steady flow field in the Eulerian...Ch. 4 - Is the Eulerian method of fluid flow analysis more...Ch. 4 - A weather balloon is hunched into the atmosphere...Ch. 4 - A Pilot-stalk probe can often be seen protruding...Ch. 4 - List at least three oiler names for the material...Ch. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - For the velocity field of Prob. 4-6, calculate the...Ch. 4 - Consider steady flow of air through the diffuser...Ch. 4 - For the velocity field of Prob. 4-21, calculate...Ch. 4 - A steady, incompressible, two-dimensional (in the...Ch. 4 - The velocity field for a flow is given by...Ch. 4 - Prob. 25CPCh. 4 - What is the definition of a timeline? How can...Ch. 4 - What is the definition of a streamline? What do...Ch. 4 - Prob. 28CPCh. 4 - Consider the visualization of flow over a 15°...Ch. 4 - Consider the visualization of ground vortex flow...Ch. 4 - Consider the visualization of flow over a sphere...Ch. 4 - Prob. 32CPCh. 4 - Consider a cross-sectional slice through an array...Ch. 4 - A bird is flying in a room with a velocity field...Ch. 4 - Conversing duct flow is modeled by the steady,...Ch. 4 - The velocity field of a flow is described by...Ch. 4 - Consider the following steady, incompressible,...Ch. 4 - Consider the steady, incompressible,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - The velocity field for a line some in the r plane...Ch. 4 - A very small circular cylinder of radius Rtis...Ch. 4 - Consider the same two concentric cylinders of...Ch. 4 - The velocity held for a line vartex in the r...Ch. 4 - Prob. 47PCh. 4 - Name and briefly describe the four fundamental...Ch. 4 - Prob. 49CPCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Using the results of Prob. 4—57 and the...Ch. 4 - Converging duct flow (Fig. P4—16) is modeled by...Ch. 4 - Prob. 60PCh. 4 - For the velocity field of Prob. 4—60, what...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Prob. 67PCh. 4 - Consider the steady, incompressible,...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A cylindrical lank of water rotates in solid-body...Ch. 4 - Prob. 75PCh. 4 - A cylindrical tank of radius rrim= 0.354 m rotates...Ch. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - For the Couette flow of Fig. P4—79, calculate the...Ch. 4 - Combine your results from Prob. 4—80 to form the...Ch. 4 - Consider a steady, two-dimensional, incompressible...Ch. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Consider the following steady, three-dimensional...Ch. 4 - Prob. 85PCh. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Briefly explain the purpose of the Reynolds...Ch. 4 - Prob. 88CPCh. 4 - True or false: For each statement, choose whether...Ch. 4 - Consider the integral ddtt2tx2. Solve it two ways:...Ch. 4 - Prob. 91PCh. 4 - Consider the general form of the Reynolds...Ch. 4 - Consider the general form of the Reynolds...Ch. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - The velocity field for an incompressible flow is...Ch. 4 - Consider fully developed two-dimensional...Ch. 4 - For the two-dimensional Poiseuille flow of Prob....Ch. 4 - Combine your results from Prob. 4—100 to form the...Ch. 4 - Prob. 103PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 116PCh. 4 - Based on your results of Prob. 4—116, discuss the...Ch. 4 - Prob. 118PCh. 4 - In a steady, two-dimensional flow field in the...Ch. 4 - A steady, two-dimensional velocity field in the...Ch. 4 - A velocity field is given by u=5y2,v=3x,w=0 . (Do...Ch. 4 - The actual path traveled by an individual fluid...Ch. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Water is flowing in a 3-cm-diameter garden hose at...Ch. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - An array of arrows indicating the magnitude and...Ch. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - A steady, two-dimensional velocity field is given...Ch. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please help me to answer number (a) with detailed explanation by today. thank youarrow_forwardPlease help me to answer question (B) by today with explanation. thank youarrow_forward(b) For each flow description: (i) Steady, compressible flow of air. (ii) Arbitrary flow (Lagrangian perspective). (iii) Unsteady, incompressible flow of viscous oil. (iv) Arbitrary flow (Eulerian perspective). choose from the list below the form of mass conservation you would use for that situation and explain your choice: 1. V · ū = 0 Dp 2. = -pV · ū Dt др 3. + V· (pū) = 0 4. V · (pū) = 0arrow_forward
- How does the field of fluid dynamics play a critical role in the design and optimization of aerodynamic structures for aerospace applications, and what are the major challenges engineers face in achieving high-performance and fuel-efficient aircraft in the rapidly evolving aviation industry?arrow_forward1- Reynolds number is a dimensionless number represent .....to .. 2- The velocity profile of the flow between two parallel plates is linear if the pressure gradient equal and parabolic if the pressure gradient has a .... 3- In the sink and source flow the potential function is represented as.. ...... and the stream function is represented as **** 4- In the laminar boundary layer, the .............. is the dominant reason for the loss while in turbulent boundary layer the is dominant. 5- For inviscid flow, there are no shear stresses the only forces acting on a fluid element are ....... and. *****arrow_forwardQ4: Answer the following 1) If for a flow a stream function exists and satisfies the Laplace equation, then which of the following is the correct statement? (a) The flow is rotational (b) The flow is rotational and incompressible (c) The flow is irrotational and compressible (d)The flow is irrotational and incompressible |2) The boundary layer thickness for flow over a flat plate (a) decreases with an increase in the free stream velocity (b) increases with an increase in the free stream velocity (c) decreases with an increase in the kinematic viscosity 3) In the Fanno flow ,if the flow is supersonic ,a shock appears in the duct when (b) L > Lmax 4) An automotive wing is a device whose intended design is to generate (a) L = Lmax (c) L< Lmax ----------as air passes around it. 5) -- is a unit less value denotes how much an object resists movement through a fluid |6)Fluid accelerate or decelerates at any point in a variable area duct depends on ------ and 7) To decrease drag force it is…arrow_forward
- An incompressible fluid of density ρ and viscosity μ flows down a plane inclined at an angle α.Assume constant gravitational acceleration downward, fully-developed flow, constant pressure inthe air outside the fluid, and zero stress exerted by the air on the fluid. i) Starting from the incompressible Navier-Stokes equations, derive the differential equation andboundary conditions that govern the velocity u(y). ii) Solve the equation from the previous part for u(y). iii) Using your solution, calculate the following quantities: The mass flow rate (per unit depth) down the channel. The vorticity vector, ~ξ, and rate-of-strain tensor, epsilon at a point (x, y) in the channel. The shear stress exerted by the fluid on the bottom wall The viscous force in the fluid iv) Consider a control volume consisting of a section of length L of the channel. Demonstratethat the conservation of x momentum holds for this control volume by integrating appropriatequantities over its perimeter and…arrow_forwardAn incompressible fluid flows in a linear porous medium with the following properties: Lenth = 3000 ft k = 100 md p1 = 2000 psig p2 = 1980 psig height = 25 ft porosity = 20% width = 300 ft viscosity = 2 cP Assume the dimension is slanted, i.e., a dip angle of 5 degrees (downward from p1 location to p2 location), what is the apparent fluid velocity under this new boundary condition?arrow_forwardAlgebraic equations such as Bernoulli's relation, are dimensionally consistent, but what about differential equations? Consider, for example, the boundary-layer x-momentum equation, first derived by Ludwig Prandtl in 1904: ди ди ap ат ри — + pu Әх + pg: + дх ày ду where T is the boundary-layer shear stress and g, is the com- ponent of gravity in the x direction. Is this equation dimen- sionally consistent? Can you draw a general conclusion?arrow_forward
- Two different flow fields over two different bodies are dynamically similar if (a) The streamline patterns are geometrically similar; TRUE OR FALSE (b) The non-dimensional distributions such as V/V∞, p/p∞, etc, are the same when plotted against common non-dimensional coordinates TRUE or FALSE? (c) Force coefficients are the same TRUE or FALSE? (d) State the criteria for two flows to be dynamically similar (e) An airplane flies at 800km/h at 11700m standard altitude where the ambient pressure and temperature are 20.335 kPA and 216.66K respectively. A 1/50 scale model of the airplane is tested in a wind tunnel where the temperature is 288K. Calculate the tunnel test section wind speed and pressure such that force coefficients of the model and prototype are the same. Assume viscosity is proportional to the square root of T. [ Hint: flow is viscous and compressible; equation of state for a perfect gas applies]arrow_forwardBoundary conditions is a statement about the velocity or stress at the boundaries of the system. Boundary conditions used in momentum transport for fluid-solid, liquid-liquid and liquid-gas interfaces. Explain an assumption to build this boundary condition Reference:arrow_forwardQuestion 1: Consider fully developed two-dimensional Poiseuille flow: flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dx driving the flow as illustrated in the figure (dP/dx is constant and negative). The flow is steady, incompressible, and two-dimensional in the xy-plane. The velocity components are given by 1 dP u = -(y² - hy); v = 0 2μ αχ h where μ is the fluid's viscosity. Is this flow rotational or irrotational? u(y) a. If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise? b. calculate the linear strain rates in the x- and y-directions, and c. calculate the shear strain rate Exy. d. Combine your results to form the two-dimensional strain rate tensor εij in the xy-plane,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license