Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 88CP
To determine
The similarities and differences between the material derivative and the Reynolds transport theorem.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cubic block of side L and mass M is dragged
over an oil film across table by a string connects
to a hanging block of massmas shown in figure.
The Newtonian oil film of thickness h has dynamic
viscosity u and the flow condition is laminar. The
acceleration due to gravity is g. The steady state
velocity V of block is
M
Mgh
(a)
Mgh
(b)
mgh
(c)
mgh
(d)
Conduct thorough a research on Boundary layer and viscous sub layer, Shear stress in circular pipe as it relates to mechanics of fluids
Question 1: Consider fully developed two-dimensional Poiseuille flow: flow between two infinite
parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a
forced pressure gradient dP/dx driving the flow as
illustrated in the figure (dP/dx is constant and
negative). The flow is steady, incompressible, and
two-dimensional in the xy-plane. The velocity
components are given by
1 dP
u = -(y² - hy); v = 0
2μ αχ
h
where μ is the fluid's viscosity. Is this flow rotational or irrotational?
u(y)
a. If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this
flow rotate clockwise or counterclockwise?
b. calculate the linear strain rates in the x- and y-directions, and
c. calculate the shear strain rate Exy.
d. Combine your results to form the two-dimensional strain rate tensor εij in the xy-plane,
Chapter 4 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 4 - What does the word kinematics mean? Explain what...Ch. 4 - Briefly discuss the difference between derivative...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - -5 A steady, two-dimensional velocity field is...Ch. 4 - Consider steady flow of water through an...Ch. 4 - What is the Eulerian description of fluid motion?...Ch. 4 - Is the Lagrangian method of fluid flow analysis...Ch. 4 - A stationary probe is placed in a fluid flow and...Ch. 4 - A tiny neutrally buoyant electronic pressure probe...
Ch. 4 - Define a steady flow field in the Eulerian...Ch. 4 - Is the Eulerian method of fluid flow analysis more...Ch. 4 - A weather balloon is hunched into the atmosphere...Ch. 4 - A Pilot-stalk probe can often be seen protruding...Ch. 4 - List at least three oiler names for the material...Ch. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - For the velocity field of Prob. 4-6, calculate the...Ch. 4 - Consider steady flow of air through the diffuser...Ch. 4 - For the velocity field of Prob. 4-21, calculate...Ch. 4 - A steady, incompressible, two-dimensional (in the...Ch. 4 - The velocity field for a flow is given by...Ch. 4 - Prob. 25CPCh. 4 - What is the definition of a timeline? How can...Ch. 4 - What is the definition of a streamline? What do...Ch. 4 - Prob. 28CPCh. 4 - Consider the visualization of flow over a 15°...Ch. 4 - Consider the visualization of ground vortex flow...Ch. 4 - Consider the visualization of flow over a sphere...Ch. 4 - Prob. 32CPCh. 4 - Consider a cross-sectional slice through an array...Ch. 4 - A bird is flying in a room with a velocity field...Ch. 4 - Conversing duct flow is modeled by the steady,...Ch. 4 - The velocity field of a flow is described by...Ch. 4 - Consider the following steady, incompressible,...Ch. 4 - Consider the steady, incompressible,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - The velocity field for a line some in the r plane...Ch. 4 - A very small circular cylinder of radius Rtis...Ch. 4 - Consider the same two concentric cylinders of...Ch. 4 - The velocity held for a line vartex in the r...Ch. 4 - Prob. 47PCh. 4 - Name and briefly describe the four fundamental...Ch. 4 - Prob. 49CPCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Using the results of Prob. 4—57 and the...Ch. 4 - Converging duct flow (Fig. P4—16) is modeled by...Ch. 4 - Prob. 60PCh. 4 - For the velocity field of Prob. 4—60, what...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Prob. 67PCh. 4 - Consider the steady, incompressible,...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A cylindrical lank of water rotates in solid-body...Ch. 4 - Prob. 75PCh. 4 - A cylindrical tank of radius rrim= 0.354 m rotates...Ch. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - For the Couette flow of Fig. P4—79, calculate the...Ch. 4 - Combine your results from Prob. 4—80 to form the...Ch. 4 - Consider a steady, two-dimensional, incompressible...Ch. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Consider the following steady, three-dimensional...Ch. 4 - Prob. 85PCh. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Briefly explain the purpose of the Reynolds...Ch. 4 - Prob. 88CPCh. 4 - True or false: For each statement, choose whether...Ch. 4 - Consider the integral ddtt2tx2. Solve it two ways:...Ch. 4 - Prob. 91PCh. 4 - Consider the general form of the Reynolds...Ch. 4 - Consider the general form of the Reynolds...Ch. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - The velocity field for an incompressible flow is...Ch. 4 - Consider fully developed two-dimensional...Ch. 4 - For the two-dimensional Poiseuille flow of Prob....Ch. 4 - Combine your results from Prob. 4—100 to form the...Ch. 4 - Prob. 103PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 116PCh. 4 - Based on your results of Prob. 4—116, discuss the...Ch. 4 - Prob. 118PCh. 4 - In a steady, two-dimensional flow field in the...Ch. 4 - A steady, two-dimensional velocity field in the...Ch. 4 - A velocity field is given by u=5y2,v=3x,w=0 . (Do...Ch. 4 - The actual path traveled by an individual fluid...Ch. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Water is flowing in a 3-cm-diameter garden hose at...Ch. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - An array of arrows indicating the magnitude and...Ch. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - A steady, two-dimensional velocity field is given...Ch. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 1: Consider fully developed two-dimensional Poiseuille flow: flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dx driving the flow as illustrated in the figure (dP/dx is constant and negative). The flow is steady, incompressible, and two-dimensional in the xy-plane. The velocity components are given by 1 dP u(y) u = 2μ dx (y²hy); v = 0 where is the fluid's viscosity. Is this flow rotational or irrotational? a. If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise? b. calculate the linear strain rates in the x- and y-directions, and c. calculate the shear strain rate ɛxy. d. Combine your results to form the two-dimensional strain rate tensor εij in the xy-plane,arrow_forward(b) In two-dimensional boundary layer, shear stress was changed linearly from the solid surface toward y-axis until it reaches the value of zero at y = 8. Based on Table 2 and setting given to you; (i) Derive the equation of displacement thickness and momentum thickness using Von Karman Approximation Method; and (ii) Determine the accuracy of this method in determining the value of displacement thickness and momentum thickness. Table 2: Equation of Velocity Profile Equation u/U = 3(y/8)/2 – (y/8)³/2 Setting 2arrow_forwardTrue or false: For each statement, choose whether the statement is true or false and discuss your answer briefly.(a) The Reynolds transport theorem is useful for transforming conservation equations from their naturally occurring control volume forms to their system forms.(b) The Reynolds transport theorem is applicable only to nondeforming control volumes.(c) The Reynolds transport theorem can be applied to both steady and unsteady flow fields.(d ) The Reynolds transport theorem can be applied to both scalar and vector quantities.arrow_forward
- Consider the pipe annulus sketched in fig. Assume that the pressure is constant everywhere (there is no forced pressure gradient driving the flow). However, let the inner cylinder be moving at steady velocity V to the right. The outer cylinder is stationary. (This is a kind of axisymmetric Couette flow.) Generate an expression for the x-component of velocity u as a function of r and the other parameters in the problem.arrow_forwardwrite Prandtl's boundary layer equation with appropriate boundary conditionsarrow_forwardD Eulerian A description Dt System analysis В RTT Fill in th blanks (A, B), |is related through the material derivative to an Eulerian description. Systems analysis is related to analysis using the reynolds transport theorem.arrow_forward
- Equations needed for turbulence in fluid dynamics. Do I need to derive them?arrow_forwardBernoulli’s principle and the continuity equation. Give alsoan example of their real-life application.arrow_forwardHello sir Muttalibi is a step solution in detailing mathematics the same as an existing step solution EXAMPLE 6-1 Momentum-Flux Correction Factor for Laminar Pipe Flow CV Vavg Consider laminar flow through a very long straight section of round pipe. It is shown in Chap. 8 that the velocity profile through a cross-sectional area of the pipe is parabolic (Fig. 6-15), with the axial velocity component given by r4 V R V = 2V 1 avg R2 (1) where R is the radius of the inner wall of the pipe and Vavg is the average velocity. Calculate the momentum-flux correction factor through a cross sec- tion of the pipe for the case in which the pipe flow represents an outlet of the control volume, as sketched in Fig. 6-15. Assumptions 1 The flow is incompressible and steady. 2 The control volume slices through the pipe normal to the pipe axis, as sketched in Fig. 6-15. Analysis We substitute the given velocity profile for V in Eq. 6-24 and inte- grate, noting that dA, = 2ar dr, FIGURE 6–15 %3D Velocity…arrow_forward
- Boundary conditions is a statement about the velocity or stress at the boundaries of the system. Boundary conditions used in momentum transport for fluid-solid, liquid-liquid and liquid-gas interfaces. Explain an assumption to build this boundary condition Reference:arrow_forward1. A fluid is bounded by two parallel plates of infinite width and length as shown in FIGURE Q1. The upper plate moves at 7 m/s, and the lower plate is fixed. The fluid's dynamic viscosity is 1.85X105 N.s/m?. Assume Couette flow with pressure gradient, = 0.1 N/m³. a. Propose the discretization method to solve Couette flow equation with pressure gradient below. Let the number of nodes, n = 9, the distance between the nodes is 0.05 m. Obtain the velocity of all the internal nodes using the matrix inversion method and the iterative method. Compare the results and the effectiveness of both methods (in terms of calculation effort and ease of setting up the problem). + b. Flow shear stress is governed by the following equation ôu Propose the discretization method to solve the above equation and calculate the shear stress at node 1. Describe the condition in tems of the pressure gradient when the shear stress at the bottom plate is zero. Moving plate at Um/s N= N-1 `Fixed plate FIGURE Q1arrow_forwardSolve it pls. Dont say blur image.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License