Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 108P
To determine
The linear strain along x and r directions and the shear strain rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4-17 Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-16. The pressure
field is given by
P = Po
2U,bx + b°(x² + y°)
where P, is the pressure at x = 0. Generate an expression for
the rate of change of pressure following a fluid particle.
Consider a steady, two-dimensional, incompressible flow field in the xy-plane. The linear strain rate in the x-direction is 1.75 s−1. Calculate the linear strain rate in the y-direction.
he velocity at apoint in aflued for one-dimensional
Plow wmay be aiven in The Eutkerian coordinater by
U=Ax+ Bt, Show That X
Coordinates Canbe obtained from The Eulerian system.
The intial position
by Xo and The intial time to zo man be assumeal ·
1.
x = foxo, yo) in The Lagrange
of The fluid parficle is designated
Chapter 4 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 4 - What does the word kinematics mean? Explain what...Ch. 4 - Briefly discuss the difference between derivative...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - -5 A steady, two-dimensional velocity field is...Ch. 4 - Consider steady flow of water through an...Ch. 4 - What is the Eulerian description of fluid motion?...Ch. 4 - Is the Lagrangian method of fluid flow analysis...Ch. 4 - A stationary probe is placed in a fluid flow and...Ch. 4 - A tiny neutrally buoyant electronic pressure probe...
Ch. 4 - Define a steady flow field in the Eulerian...Ch. 4 - Is the Eulerian method of fluid flow analysis more...Ch. 4 - A weather balloon is hunched into the atmosphere...Ch. 4 - A Pilot-stalk probe can often be seen protruding...Ch. 4 - List at least three oiler names for the material...Ch. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - For the velocity field of Prob. 4-6, calculate the...Ch. 4 - Consider steady flow of air through the diffuser...Ch. 4 - For the velocity field of Prob. 4-21, calculate...Ch. 4 - A steady, incompressible, two-dimensional (in the...Ch. 4 - The velocity field for a flow is given by...Ch. 4 - Prob. 25CPCh. 4 - What is the definition of a timeline? How can...Ch. 4 - What is the definition of a streamline? What do...Ch. 4 - Prob. 28CPCh. 4 - Consider the visualization of flow over a 15°...Ch. 4 - Consider the visualization of ground vortex flow...Ch. 4 - Consider the visualization of flow over a sphere...Ch. 4 - Prob. 32CPCh. 4 - Consider a cross-sectional slice through an array...Ch. 4 - A bird is flying in a room with a velocity field...Ch. 4 - Conversing duct flow is modeled by the steady,...Ch. 4 - The velocity field of a flow is described by...Ch. 4 - Consider the following steady, incompressible,...Ch. 4 - Consider the steady, incompressible,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - The velocity field for a line some in the r plane...Ch. 4 - A very small circular cylinder of radius Rtis...Ch. 4 - Consider the same two concentric cylinders of...Ch. 4 - The velocity held for a line vartex in the r...Ch. 4 - Prob. 47PCh. 4 - Name and briefly describe the four fundamental...Ch. 4 - Prob. 49CPCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Using the results of Prob. 4—57 and the...Ch. 4 - Converging duct flow (Fig. P4—16) is modeled by...Ch. 4 - Prob. 60PCh. 4 - For the velocity field of Prob. 4—60, what...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Prob. 67PCh. 4 - Consider the steady, incompressible,...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A cylindrical lank of water rotates in solid-body...Ch. 4 - Prob. 75PCh. 4 - A cylindrical tank of radius rrim= 0.354 m rotates...Ch. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - For the Couette flow of Fig. P4—79, calculate the...Ch. 4 - Combine your results from Prob. 4—80 to form the...Ch. 4 - Consider a steady, two-dimensional, incompressible...Ch. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Consider the following steady, three-dimensional...Ch. 4 - Prob. 85PCh. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Briefly explain the purpose of the Reynolds...Ch. 4 - Prob. 88CPCh. 4 - True or false: For each statement, choose whether...Ch. 4 - Consider the integral ddtt2tx2. Solve it two ways:...Ch. 4 - Prob. 91PCh. 4 - Consider the general form of the Reynolds...Ch. 4 - Consider the general form of the Reynolds...Ch. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - The velocity field for an incompressible flow is...Ch. 4 - Consider fully developed two-dimensional...Ch. 4 - For the two-dimensional Poiseuille flow of Prob....Ch. 4 - Combine your results from Prob. 4—100 to form the...Ch. 4 - Prob. 103PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 116PCh. 4 - Based on your results of Prob. 4—116, discuss the...Ch. 4 - Prob. 118PCh. 4 - In a steady, two-dimensional flow field in the...Ch. 4 - A steady, two-dimensional velocity field in the...Ch. 4 - A velocity field is given by u=5y2,v=3x,w=0 . (Do...Ch. 4 - The actual path traveled by an individual fluid...Ch. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Water is flowing in a 3-cm-diameter garden hose at...Ch. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - An array of arrows indicating the magnitude and...Ch. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - A steady, two-dimensional velocity field is given...Ch. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Pravin bhaiarrow_forwardIRCIC Next Generat... A TASHRM The velocity field for a fluid flow is given by following expression: V (0.2x² +2y+2.5)i +(0.5x+2y -6)j+(0.15x +3y + z)k The strain tensor at (2,1,-1) will be: 0.8 1.25 0.30 a)-1.25 -4 0.30 -1 0.8 1.25 0.70) b) 1.25 4 2 0.30 -2 0.8 1.25 0.30 c) | 1.25 4 -2 0.30 -2 0.8 1.25 0.30 O Tvne aere to searcharrow_forwardA common flow encountered in practice is the crossflow of a fluid approaching a long cylinder of radius R at a free stream speed of U∞. For incompressible inviscid flow, the velocity field of the flow is given as in fig. Show that the velocity field satisfies the continuity equation, and determine the stream function corresponding to this velocity field.arrow_forward
- . Determine the displacement gradient tensor, right Cauchy-Green deformation tensor, small deformations strain tensor, rotation tensor, and small deformations and rotations strain tensor for the following displacement fields: u={A X₁² X3, B X1 X2 X3,, C (X2 + X32)} where A, B, and C are constants.arrow_forwardConsider fully developed Couette flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary, as illustrated in the figure below. The flow is steady, incompressible, and two-dimensional in the XY plane. The velocity field is given by V }i = (u, v) = (v² )i +0j = V (a) Find out the acceleration field of this flow. (b) Is this flow steady? What are the u and v components of velocity? u= V² harrow_forwardEngine oil at 60°C rotates as a rigid body about the z-axis in a spinning cylindrical container. There are no viscous stresses since the water moves as a solid body; thus the Euler equation is appropriate. (We neglect viscous stresses caused by air acting on the water surface.) Integrate the Euler equation to generate an expression for pressure as a function of r and z everywhere in the water. Write an equation for the shape of the free surface (zsurface as a function of r). (Hint: P = Patm everywhere on the free surface. The flow is rotationally symmetric about the z-axis.)arrow_forward
- Perform the convective on velocity vectors u in cylindrical coordinates : Du/Dtarrow_forwardA proposed three-dimensional incompressible fl ow fi eldhas the following vector form:V = Kxi + Kyj - 2Kzk( a ) Determine if this fi eld is a valid solution to continuityand Navier-Stokes. ( b ) If g = - g k, fi nd the pressure fi eldp ( x , y , z ). ( c ) Is the fl ow irrotational?arrow_forwardconsider the 2 dimensional velocity field V= -Ayi +Axj where in this flow field does the speed equal to A? Where does the speed equal to 2A?arrow_forward
- An incompressible velocity field is given by u=a(x°y²-y), v unknown, w=bxyz where a and b are constants. (a)What is the form of the velocity component for that the flow conserves mass? (b) Write Navier- Stokes's equation in 2-dimensional space with x-y coordinate system.arrow_forwardxG 2. Find the rate of deformation for a line vortex with velocity field V=YG -Î+ x² + y² x² + y² Ans. Ex = -6 yy = 2xyG (x² + y² ) ² ¹ ² = ,&_= 0,& xyG (x² + y²)² ¹6 = -,&=&₁ = 0 -), G=const.arrow_forwardConverging duct flow is modeled by the steady, twodimensional velocity field V-›= (u, ? ) = (U0 + bx) i-›− byj-› where U0 is the horizontal speed at x = 0. Use the equation for volumetric strain rate to verify that this flow field is incompressiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license