Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 80P
If vi(t) is a step voltage in the network shown in Figure P4.25, find the value of the resistor such that a 20% overshoot in voltage will be seen across the capacitor if C = 10−6 F and L = 1 H. [Section: 4.6]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Figure 1 shows an electrical system comprising a series RLC circuit and input voltagesource ein(t).(a) Derive the input-output equation with output y = I and input u = ein(t).
(b) Using the derived input-output equation, drive the system transfer function G(s)that relates output to input. Use the following numerical values for the electrical systemparameters: resistance R = 2Ω, inductance L = 0.25H, and capacitance C = 0.4F.
(c) Using the derived transfer function, derive the time-domain ordinary differentialequation for the input-output equation of this electrical system.
(d) Draw the complete block diagram of this series RLC circuit using the derived transferfunction.
3m ä+4cx+2kx = 4cj+3ky
For the system given above, obtain the
state-space representation.
Topic: Time Response
Please Make it digital instead of handwritten if applicable but it can't please make your handwritten readable. Thank you very much
Please Answer No.1
Consider the translational mechanical network system shown on the figure. A 1-lb force, f(t), si applied at t=0. If fv=1, find K and M such that the response is characterized by a 4-sec settling time and a 1-sec peak time. Also, what is the resulting %OS?
Chapter 4 Solutions
Control Systems Engineering
Ch. 4 - Prob. 1RQCh. 4 - What does the performance specification for a...Ch. 4 - Prob. 3RQCh. 4 - In a system with an input and an output, what...Ch. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - 7. What is the difference between the natural...Ch. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQ
Ch. 4 - List five specifications for a second-order...Ch. 4 - Prob. 12RQCh. 4 - What pole locations characterize (1) the...Ch. 4 - Prob. 14RQCh. 4 - How can you justify pole-zero cancellation?Ch. 4 - Prob. 16RQCh. 4 - 17. What is the relationship between , which...Ch. 4 - Name a major advantage of using time-domain...Ch. 4 - Prob. 19RQCh. 4 - What three pieces of information must be given in...Ch. 4 - 21. How can the poles of a system be found from...Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - MATIAB ML 3. Plot the step responses for Problem 2...Ch. 4 - Find the capacitor voltage in the network shown in...Ch. 4 - For the system shown in Figure P4.3, (a) find an...Ch. 4 - Prob. 8PCh. 4 - MATLAB ML 9. Use MATLAB to find the poles of...Ch. 4 - Find the transfer function and poles of the system...Ch. 4 - MATLAB ML 11. Repeat Problem 10 using MATLAB....Ch. 4 - Write the general form of the capacitor voltage...Ch. 4 - Solve for x(t) in the system shown in Figure P4.5...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Calculate the exact response of each system of...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - For each of the second-order systems that follow,...Ch. 4 - MATLAB ML 21. Repeat Problem 20 using MATLAB. Have...Ch. 4 - GUI Tool GUIT
22. Use MATLAB’s LTI Viewer and...Ch. 4 - Prob. 23PCh. 4 - Find the transfer function of a second-order...Ch. 4 - For the system shown in Figure P4.7, do the...Ch. 4 - For the system shown in Figure P4.8, a step torque...Ch. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - State Space SS 38. A system is represented by the...Ch. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - State Space SS 41. Given the following system...Ch. 4 - State Space SS 42. Solve the following state...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - A MOEMS (optical MEMS) is a MEMS (Micro...Ch. 4 - Prob. 56PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 63PCh. 4 - Prob. 67PCh. 4 - Figure P4.l6 shows the step response of an...Ch. 4 - Figure P4. I 7 shows the free-body diagrams for...Ch. 4 - Find an equation that relates 2% settling time to...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - 76. Find J and K in the rotational system shown in...Ch. 4 - Given the system shown in Figure P4.22, find the...Ch. 4 - Prob. 78PCh. 4 - Find M and K, shown in the system of Figure P4.24,...Ch. 4 - If vi(t) is a step voltage in the network shown in...Ch. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - For the circuit shown in Figure P4.26, find the...Ch. 4 - Prob. 84PCh. 4 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider in Figure 1 = 0. Iff, the translational mechanical system shown P4.17. A 1-pound force, f(t), is applied at 1, find K and M such that the response is characterized by a 4-second settling time and a 1-second peak time. Also, what is the resulting percent overshoot? [Section: 4.6] 1+ 270 Karrow_forwardA discrete time system has transfer function H(z). If H(o) = 0 there is a zero in z = o. Select one: O True O Falsearrow_forward1 / 1 Problem No. 1 1A. 100% + 1B. Consider the translational mechanical system shown in Figure P4.17. A 1-pound force, f(t), is applied at t = 0. If fy = 1, find K and M such that the response is characterized by a 4-second settling time and a 1-second peak time. Also, what is the resulting percent overshoot? [Section: 4.6] 70) 0000 31/1 10000 K FIGURE P4.17 Given the translational mechanical system of Figure P4.17, where K = 1 and f(1) is a unit step. find the values of M and ƒ, to yield a response with 17% overshoot and a settling time of 10 seconds. [Section: 4.6]arrow_forward
- See Imagearrow_forward3:17 AM ← Jonathan Wickert, Kemper Lewis - An Introduction to Mechanical Engineering-Cengage L... Figure P8.3 Problem P8.3 The disk in a computer hard drive spins at 7200 rpm (Figure P8.3). At the radius of 30 mm, a stream of data is magnetically written on the disk, and the spacing between data bits is 25 µm. Determine the number of bits per second that pass by the read/write head. 30 mm 7200 rpm BA um 4G+ 49%arrow_forwardnk int m The spring-mass-system shown in the figure has the following parameters: spring constant k = 4 N/m; mass m 6 %3D kg and the constant n = 1.6. M is the corresponding mass-matrix of the system. V1 and V2 are the eigenvectors associated with the smallest and largest natural frequencies of the system, respectively. If V,TV, = 1 and V2 V2 = 1, then what is value of V,™MV2 (in kg)? Answer:arrow_forward
- A certain mass is driven by base excitation through a spring (Figure P4.13). Its parameter values are m = 100 kg, c = 1000 N * s/m, and k = 10,000 N/m. Determine its peak frequency w_p, it’s peak M_p, and its bandwidth.arrow_forwardPlease solve the following question. Note that the second picture is the solution of the question from the book, I just want to know the steps to reach it.arrow_forward4 rad, = 0.5. On the complex plane, draw the root(s) of a 2nd order system with the following characteristics: W₁ = 4 radarrow_forward
- 2. Assume a 2 DOF rigid body with a rigid bar, which is supported by a two-spring damper :3k4, m = supports. Inertia and length of the rigid body are I = 10kg and L= 4m. (a) Derive the mathematical model of the system in variable form (b) Write the state space representation of the above system. (c) k₁= k₂ = 800N.m and c₁ = C₂ = 350N.s/m Develop a simulink model and plot all the system response for input y = sin(wt), where w 1 rad = S (d) k₁ 400v, k₂ 800N.m and c₁ = 175N.s/m, c₂ 350N.s/m Develop a simulink model and plot all the system response for input y = sin(wt), where w = = 1 rad 8 - L/4 k₁,c m, I L/4 k₂,c y = sin wtarrow_forward(2) A mechanical system is modeled by the system of ODE's. For this system choose [x₂] [y] -0-0 = X3 18 2 consider the output to be y, and do the following: Determine the state-space matrices A, B, and C ● Determine the characteristic equation mÿ+k₁y+k₂(y−z)=F c₂ż−k₂(y-z)=0arrow_forwardConsider the following state space system 1 B = 1 C =[1 0] D=[0] -5 -6 1- Check the controllability of the system. 2- Check the observability of the systemarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license