Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 17P
Calculate the exact response of each system of Problem 8 using Laplace transform techniques, and compare the results to those obtained in that problem. [Sections: 4.3, 4.4]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
LAPLACE TRANSFORM .need only handwritten solution .otherwise downvote.
All values equal to 1
A proposed hypersonic plane would climb to 100,000 feet, fly 3800 miles per hour, and crossthe Pacific in 2 hours. Control of the aircraft speed could be represented by the model in Figure.Find the sensitivity of the closed-loop transfer function T(s) to a small change in the parameter
Chapter 4 Solutions
Control Systems Engineering
Ch. 4 - Prob. 1RQCh. 4 - What does the performance specification for a...Ch. 4 - Prob. 3RQCh. 4 - In a system with an input and an output, what...Ch. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - 7. What is the difference between the natural...Ch. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQ
Ch. 4 - List five specifications for a second-order...Ch. 4 - Prob. 12RQCh. 4 - What pole locations characterize (1) the...Ch. 4 - Prob. 14RQCh. 4 - How can you justify pole-zero cancellation?Ch. 4 - Prob. 16RQCh. 4 - 17. What is the relationship between , which...Ch. 4 - Name a major advantage of using time-domain...Ch. 4 - Prob. 19RQCh. 4 - What three pieces of information must be given in...Ch. 4 - 21. How can the poles of a system be found from...Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - MATIAB ML 3. Plot the step responses for Problem 2...Ch. 4 - Find the capacitor voltage in the network shown in...Ch. 4 - For the system shown in Figure P4.3, (a) find an...Ch. 4 - Prob. 8PCh. 4 - MATLAB ML 9. Use MATLAB to find the poles of...Ch. 4 - Find the transfer function and poles of the system...Ch. 4 - MATLAB ML 11. Repeat Problem 10 using MATLAB....Ch. 4 - Write the general form of the capacitor voltage...Ch. 4 - Solve for x(t) in the system shown in Figure P4.5...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Calculate the exact response of each system of...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - For each of the second-order systems that follow,...Ch. 4 - MATLAB ML 21. Repeat Problem 20 using MATLAB. Have...Ch. 4 - GUI Tool GUIT
22. Use MATLAB’s LTI Viewer and...Ch. 4 - Prob. 23PCh. 4 - Find the transfer function of a second-order...Ch. 4 - For the system shown in Figure P4.7, do the...Ch. 4 - For the system shown in Figure P4.8, a step torque...Ch. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - State Space SS 38. A system is represented by the...Ch. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - State Space SS 41. Given the following system...Ch. 4 - State Space SS 42. Solve the following state...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - A MOEMS (optical MEMS) is a MEMS (Micro...Ch. 4 - Prob. 56PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 63PCh. 4 - Prob. 67PCh. 4 - Figure P4.l6 shows the step response of an...Ch. 4 - Figure P4. I 7 shows the free-body diagrams for...Ch. 4 - Find an equation that relates 2% settling time to...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - 76. Find J and K in the rotational system shown in...Ch. 4 - Given the system shown in Figure P4.22, find the...Ch. 4 - Prob. 78PCh. 4 - Find M and K, shown in the system of Figure P4.24,...Ch. 4 - If vi(t) is a step voltage in the network shown in...Ch. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - For the circuit shown in Figure P4.26, find the...Ch. 4 - Prob. 84PCh. 4 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please solve question 4.44 attached below, Thank You!arrow_forwards)- Characteristic equation for a 5th order system is given as: s5 + 4s4 + 3s3 + s? + 2s + 10 Using Routh-Hurwiz stability criteria, determine if the system is stable or unstable (show your work)arrow_forward4 Problem Find the Laplace transform fraction for the following function and rearrange it such that X(s)/F(s) is the only term on the left-hand-side: x(t) + 25wx (t) +w²x(t) = f(t) Assume the initial conditions are all zero, x(to) = x(to)= (to) = x (to) = 0 with initial time to = 0. Hint: Use the differentiation theorem.arrow_forward
- 10arrow_forward• The unity feedback control structure has the following block diagram: w C(s) P(s)arrow_forwardConsider in Figure 1 = 0. Iff, the translational mechanical system shown P4.17. A 1-pound force, f(t), is applied at 1, find K and M such that the response is characterized by a 4-second settling time and a 1-second peak time. Also, what is the resulting percent overshoot? [Section: 4.6] 1+ 270 Karrow_forward
- For the system shown in the figure below: 1. Derive the system differential equations of motion. 2. Use Laplace transform to solve for the displacement x:(t) and x2(t), when K,=k2 =k3=1, m,= m;=1, and x1(0) =0, x1(0) = -1, x2(0) =0, and x{0) =1 3. Sketch x:(t) and X2(t) m, X1 X2arrow_forwardConsider the following rotational mechanical system, a. Apply the "by inspection" method in Laplace domain to write the system of equations that represents the dynamics of the system b. Solve for the output variable q1(s). Use Cramer's rule or the substitution method to solve for the output variable q1(s). c. Give the transfer function G(s) = 91(s)/T(s) 0₁ (1) T(1) J1 82(1) oför J2 oooo K₁ K2 oooo Darrow_forwardThe transfer function of a system is shown below. G (s) = S-a (8+b)(8-c) Where: a = 6, b = 5 and c = 9 %3D When you solve the step response in which R(s) = 1/s, you will get the form of c(t) as shown below: c (t) = X+Y e-bt + Z ect %3D X, Y and Z are constant values which you will obtain when you solve the response c(t). For the blank below, enter the sum of Y and Z (if negative, place a "-" sign before the value). Use FOUR decimal places. Y+Z = %3Darrow_forward
- 4G I. 3:22 A moodle1.du.edu.om Consider the 3 degree of freedom robot manipulator as shown in the figure Link 3 Länk 2 Trint 1 The objective is to find the kinematics inverse of the robot Px=0.9 m, Py=0.6, L1=1.5m, L2=1.5m and qz= 2 rad The value of cos(q2) is equal to Choose... + The positive value of sin(q2) is equal to Choose... + The value of q2 in rad is Choose... + The value of qı in rad is Choose... + The value of q3 in rad is Choose... +arrow_forwardAs8arrow_forward2) Consider the transfer function of a system below. Please find the range of K for stability: K G(s) = (s + 3)(s + 8)(s + 10)(s + 1) + Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license