Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 14P
Solve for x(t) in the system shown in Figure P4.5 f(t) is a unit step. [Section: 4.4]
M = 2 kg
Ks= 6 N/m
fv= 2 N-s/M
f(t) = u(t)N
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
32. For the rotational mechanical system with gears
shown in Figure P2.18, find the transfer function,
G(s) = 03(s)/T(s). The gears have inertia and bear-
ing friction as shown. [Section: 2.7]
T(t)
to
|N1
小D
N2
N3
2, D2
Jz, D3 03(1)
N4
J4. D4
J5. D5
FIGURE P2.18
sair
Please solve the following question. Note that the second picture is the solution of the question from the book, I just want to know the steps to reach it.
A velocity of a vehicle is required to be controlled and maintained constant even if there are disturbances because of wind, or road surface variations. The forces that are applied on the vehicle are the engine force (u), damping/resistive force (b*v) that opposing the motion, and inertial force (m*a). A simplified model is shown in the free body diagram below.
From the free body diagram, the ordinary differential equation of the vehicle is:
m * dv(t)/ dt + bv(t) = u (t)
Where:
v (m/s) is the velocity of the vehicle,
b [Ns/m] is the damping coefficient,
m [kg] is the vehicle mass,
u [N] is the engine force.
Question:
Assume that the vehicle initially starts from zero velocity and zero acceleration. Then, (Note that the velocity (v) is the output and the force (w) is the input to the system):
1. What is the order of this system?
Chapter 4 Solutions
Control Systems Engineering
Ch. 4 - Prob. 1RQCh. 4 - What does the performance specification for a...Ch. 4 - Prob. 3RQCh. 4 - In a system with an input and an output, what...Ch. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - 7. What is the difference between the natural...Ch. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQ
Ch. 4 - List five specifications for a second-order...Ch. 4 - Prob. 12RQCh. 4 - What pole locations characterize (1) the...Ch. 4 - Prob. 14RQCh. 4 - How can you justify pole-zero cancellation?Ch. 4 - Prob. 16RQCh. 4 - 17. What is the relationship between , which...Ch. 4 - Name a major advantage of using time-domain...Ch. 4 - Prob. 19RQCh. 4 - What three pieces of information must be given in...Ch. 4 - 21. How can the poles of a system be found from...Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - MATIAB ML 3. Plot the step responses for Problem 2...Ch. 4 - Find the capacitor voltage in the network shown in...Ch. 4 - For the system shown in Figure P4.3, (a) find an...Ch. 4 - Prob. 8PCh. 4 - MATLAB ML 9. Use MATLAB to find the poles of...Ch. 4 - Find the transfer function and poles of the system...Ch. 4 - MATLAB ML 11. Repeat Problem 10 using MATLAB....Ch. 4 - Write the general form of the capacitor voltage...Ch. 4 - Solve for x(t) in the system shown in Figure P4.5...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Calculate the exact response of each system of...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - For each of the second-order systems that follow,...Ch. 4 - MATLAB ML 21. Repeat Problem 20 using MATLAB. Have...Ch. 4 - GUI Tool GUIT
22. Use MATLAB’s LTI Viewer and...Ch. 4 - Prob. 23PCh. 4 - Find the transfer function of a second-order...Ch. 4 - For the system shown in Figure P4.7, do the...Ch. 4 - For the system shown in Figure P4.8, a step torque...Ch. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - State Space SS 38. A system is represented by the...Ch. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - State Space SS 41. Given the following system...Ch. 4 - State Space SS 42. Solve the following state...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - A MOEMS (optical MEMS) is a MEMS (Micro...Ch. 4 - Prob. 56PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 63PCh. 4 - Prob. 67PCh. 4 - Figure P4.l6 shows the step response of an...Ch. 4 - Figure P4. I 7 shows the free-body diagrams for...Ch. 4 - Find an equation that relates 2% settling time to...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - 76. Find J and K in the rotational system shown in...Ch. 4 - Given the system shown in Figure P4.22, find the...Ch. 4 - Prob. 78PCh. 4 - Find M and K, shown in the system of Figure P4.24,...Ch. 4 - If vi(t) is a step voltage in the network shown in...Ch. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - For the circuit shown in Figure P4.26, find the...Ch. 4 - Prob. 84PCh. 4 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A velocity of a vehicle is required to be controlled and maintained constant even if there are disturbances because of wind, or road surface variations. The forces that are applied on the vehicle are the engine force (u), damping/resistive force (b*v) that opposing the motion, and inertial force (m*a). A simplified model is shown in the free body diagram below. From the free body diagram, the ordinary differential equation of the vehicle is: m * dv(t)/ dt + bv(t) = u (t) Where: v (m/s) is the velocity of the vehicle, b [Ns/m] is the damping coefficient, m [kg] is the vehicle mass, u [N] is the engine force. Question: Assume that the vehicle initially starts from zero velocity and zero acceleration. Then, (Note that the velocity (v) is the output and the force (w) is the input to the system): A. Use Laplace transform of the differential equation to determine the transfer function of the system.arrow_forward01(1) 1 N-m-s/rad T(t) 02(1) 18 N-m-s/rad + 3 kg-m? 3 kg-m2 3 N-m/rad 9 N-m/rad (a) Figure P2.16a O John Wiley & Sons, Inc. All rights reserved. The matrix form of the system is 5s +9s +9 (s+9) а. (s+8) s? +s+1 5s2 +9s +9 b. -(s+9) -(s +9) 3s? + s+120,(s), 5s² +9s +9 (s+9) c. -(s+9) 3s? +s+12 5s +9s +9 d. -(s+9) F(s) -(s +9) 3s +s+120,(s), Select one: а. С O b. b O c. d d. aarrow_forward3. In this problem, you are going to analyze the dynamics of a rotational mechanical system shown in Figure below (this is also covered in Lecture Notes #3 of M. Mert Ankarali [1]). In this system input the external torque t(t), and output is the angular velocity of the load wL(t). JR WR OR K JL OL WL T DL DR The state-space representation of this system is provided in the Lecture Notes #3 [1]. Find the transfer function of the dynamical system. Find another (minimal) state-space representation for the system.arrow_forward
- 1. (25) Find the transfer function, X1(s)/F(s) For the system show in the figure. Svy = 4 N-s/m K= 5 N/m fvz = 4N-s/m fi)- M = 4 kg0000 M2 = 4 kg Svy =4 N-s/m Fv =4 N-s/marrow_forwardPlease help me doing part B all I need help with is too make the derivation of equations of motion, and derivation of the state equations, and that will do for part B if you could help me with this it would make my life alot easier, and no matlab is not necessary for this.arrow_forwardP4.7 A robot uses feedback to control the orientation of each joint axis. The load effect varies due to varying load objects and the extended position of the arm. The system will be deflected by the load carried in the gripper. Thus, the system may be represented by Figure P4.7 O, where the load torque is Ta (s) = D/s. Assume R(s) = 0 at the index position. (a) What is the effect of Ta(s) on Y(s)? (b) Determine the sensitivity of the closed loop to k2. (c) What is the steady-state error when R (s) = 1/s and Ta(s) = 0? Load disturbance T (s) R(s) Controller Y(s) Desired k2 Actual k1 joint angle joint angle s(TS + 1) kz + k4s Figure P4.7 Robot control system.arrow_forward
- a) Determine the state space representation for the translational mechanical system shown in Figure Q4(a), where force, f(t) and displacement, x(t) are the input and output of the system respectively. Use these state variables in your answer. oooo K M -x(1) -ƒ(1)arrow_forward25. For the system shown in Figure P4.7, do the follow- ing: [Section: 4.6] a. Find the transfer function G(s) = X(s)/F(s). b. Find $, om, %OS, T;, Тр, and T,. 28 N/m x(t) 3 kg f(t) 5 N-s/m FIGURE P4.7arrow_forward28. Find the transfer function, G(s) = X1(s)/F(s), for the translational mechanical system shown in Figure P2.13. [Section: 2.5] 2 N-s/m X3(1) 2 N-s/m (1)'x- [4 kg 2 N-s/m 6 N/m 6 N/m 4 kg 0000 4 kg "Frictionless FIGURE P2.13 USE MATRIX METHODarrow_forward
- Please don't provide handwritten solution ......arrow_forward1 An object of mass 125 kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of times the weight of the object is pushing the object up (weight = mg). If we assume that water 40 resistance exerts a force on the object that is proportional to the velocity of the object, with proportionality constant 10 N-sec/m, find the equation of motion of the object. After how many seconds will the velocity of the object be 90 m/sec? Assume that the acceleration due to gravity is 9.81 m/ sec2. Find the equation of motion of the object. X(t) = %3Darrow_forwardQ5/ A beam with a length L is attached to the wall with a cable as shown. A load W = 400 lb. is attached to the beam. The tension force, T, k in the cable is given by: T = WL√h²+x² hx For a beam with L= 120 in. and h = 50 in. calculate T for x = 10, 30, 50, 70, 90, and 110 in. MATLAB D Warrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license