Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 11P
MATLAB ML
11. Repeat Problem 10 using MATLAB. [Section: 4.10]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am trying to convert orbital elements to the state vector in MATLAB. My orbital elements are as follows
a = 6731;
ecc = 0.01;
inc = 142.461;
raan = 155.9325;
argp = 321.0439;
f = 145.8291;
After transforming them I get :
x = 3898.6;
y = 3898.6;
z = 3957;
vx = 5.9771;
vy = -4.5575;
vz = -1.3245;
I am wondering if the transformation is done correctly. Because x, y, and z are defined from earth's radius to the spacecraft, right? If that is the case then x, y, and z should have values greater than the earth's radius. Is my assumption correct?
equations:
QB: Obtain the transfer function of system defined by the following state space
Hi
0 4 8 [x₁
0 8 5
X2 +
-10-30-20x330/u
[123]
[x1
Y=[1 2 0] X₂
X3
snp-you
tvave
Solve the following without the use of AI. Show all steps. Thank You!
Chapter 4 Solutions
Control Systems Engineering
Ch. 4 - Prob. 1RQCh. 4 - What does the performance specification for a...Ch. 4 - Prob. 3RQCh. 4 - In a system with an input and an output, what...Ch. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - 7. What is the difference between the natural...Ch. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQ
Ch. 4 - List five specifications for a second-order...Ch. 4 - Prob. 12RQCh. 4 - What pole locations characterize (1) the...Ch. 4 - Prob. 14RQCh. 4 - How can you justify pole-zero cancellation?Ch. 4 - Prob. 16RQCh. 4 - 17. What is the relationship between , which...Ch. 4 - Name a major advantage of using time-domain...Ch. 4 - Prob. 19RQCh. 4 - What three pieces of information must be given in...Ch. 4 - 21. How can the poles of a system be found from...Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - MATIAB ML 3. Plot the step responses for Problem 2...Ch. 4 - Find the capacitor voltage in the network shown in...Ch. 4 - For the system shown in Figure P4.3, (a) find an...Ch. 4 - Prob. 8PCh. 4 - MATLAB ML 9. Use MATLAB to find the poles of...Ch. 4 - Find the transfer function and poles of the system...Ch. 4 - MATLAB ML 11. Repeat Problem 10 using MATLAB....Ch. 4 - Write the general form of the capacitor voltage...Ch. 4 - Solve for x(t) in the system shown in Figure P4.5...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Calculate the exact response of each system of...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - For each of the second-order systems that follow,...Ch. 4 - MATLAB ML 21. Repeat Problem 20 using MATLAB. Have...Ch. 4 - GUI Tool GUIT
22. Use MATLAB’s LTI Viewer and...Ch. 4 - Prob. 23PCh. 4 - Find the transfer function of a second-order...Ch. 4 - For the system shown in Figure P4.7, do the...Ch. 4 - For the system shown in Figure P4.8, a step torque...Ch. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - State Space SS 38. A system is represented by the...Ch. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - State Space SS 41. Given the following system...Ch. 4 - State Space SS 42. Solve the following state...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - A MOEMS (optical MEMS) is a MEMS (Micro...Ch. 4 - Prob. 56PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 63PCh. 4 - Prob. 67PCh. 4 - Figure P4.l6 shows the step response of an...Ch. 4 - Figure P4. I 7 shows the free-body diagrams for...Ch. 4 - Find an equation that relates 2% settling time to...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - 76. Find J and K in the rotational system shown in...Ch. 4 - Given the system shown in Figure P4.22, find the...Ch. 4 - Prob. 78PCh. 4 - Find M and K, shown in the system of Figure P4.24,...Ch. 4 - If vi(t) is a step voltage in the network shown in...Ch. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - For the circuit shown in Figure P4.26, find the...Ch. 4 - Prob. 84PCh. 4 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Explain the state space functionarrow_forwardR$ RL V (t) V(t) L Figure 7: A tuning circuit for radio 5. Figure 7 shows a tuning circuit used in radio. Derive the state equation using the linear graph approach. Also let the output variable be the voltage vo(t). Derive the output equation.arrow_forwardFor the following state-space representation,define the:– State Vector– System Matrix– Feedforward Matrix– Input Matrix & Input Vector– Output Matrix & Output Vectorarrow_forward
- Please solve this for me! Thanks!arrow_forwardPlease solve this exercise found in NISE, control engineering book. Please solve this using the translational mechanical system transfer fucntion method and kindly explain as well since this is an exercise to master the topic. Thank you very much!arrow_forwardO 1::09 O [Template] Ho... -> Homework For the system shown in figure below, Find the range of K for stable system. R K(s + 2) C s(s +5)(s² + 2s + 5) IIarrow_forward
- If a system, * + 10x + 21x = 4f(t) is converted into a state-space model, what would be the state (A), input (B), and output (C) matrices? [where input = f (t) and output = x(t)] %3D A) A = | [-21 l, B = | and C = [0 1] В -10 1 B) A = 21 ol, B = and C = [1 0] %3D C) A = = Al and C = [1 0] В %3D -21 D) None of the abovearrow_forwardi need the answer quicklyarrow_forwardThe state transmission matrix of the system whose state-space [3²₁] = [0²2 J]+[]u a. b. C. O 0 cosh at c. Ø(t) = [ a sinh at/a cosh a. ¢(t) = [sinhat cosh at a. Ø(t) = [a cosh at sinh at b. Ø(t) = [a [a cosh at a sinh at sinhat cosh at] sinhat/a] cosh at [/a] sinh at/a] a cosh at sinh at att cosh atarrow_forward
- on of nd 25. For the system shown in Figure P4.7, do the following: [Section: 4.6] a. Find the transfer function G(s) = X(s)/F(s). b. Find , n, %OS, Ts, Tp, Tr, and Cfinal for a unit-step input. 20 N/m oooo 2 N-s/m 5 kg x(1) FIGURE P4.7 f(1)arrow_forward1arrow_forwardFeedback & Control Systems State-Space Representation Write the state-space representation of the system below. Let the output of the mechanical system is x3 (t). 1 N-s/m x₁ (t) M3 = 1kg 1 N/m М1 -0000 1kg > X3 (t) 1 N-s/m 1 N/m oooo x₂ (t) M₂ 1kg 4 1 N-s/m² -1 N-s/m →f(t)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License