Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 21P
MATLAB ML
21. Repeat Problem 20 using MATLAB. Have the computer program estimate the given specifications and plot the step responses. Estimate the rise time from the plots. [Section: 4.6]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As4.
This is my third time asking this question. Please DO NOT copy and paste someone else's work or some random notes. I need an answer to this question.
There is a mass attached to a spring which is fixed against a wall. The spring is compressed and then released. Friction and is neglected. The velocity and displacement of the mass need to be modeled with an equation or set of equations so that various masses and spring constants can be input into Matlab and their motion can be observed. Motion after being released is only important, the spring being compressed is not important. This could be solved with dynamics, Matlab, there are multiple approaches.
R$
RL
V (t)
V(t)
L
Figure 7: A tuning circuit for radio
5. Figure 7 shows a tuning circuit used in radio. Derive the state equation using the linear graph
approach. Also let the output variable be the voltage vo(t). Derive the output equation.
Please follow the instructions and the requirements according to the pictures above and I kinda need the solution quickly. The language of the code is in Matlab, thank you in advance.
Chapter 4 Solutions
Control Systems Engineering
Ch. 4 - Prob. 1RQCh. 4 - What does the performance specification for a...Ch. 4 - Prob. 3RQCh. 4 - In a system with an input and an output, what...Ch. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - 7. What is the difference between the natural...Ch. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQ
Ch. 4 - List five specifications for a second-order...Ch. 4 - Prob. 12RQCh. 4 - What pole locations characterize (1) the...Ch. 4 - Prob. 14RQCh. 4 - How can you justify pole-zero cancellation?Ch. 4 - Prob. 16RQCh. 4 - 17. What is the relationship between , which...Ch. 4 - Name a major advantage of using time-domain...Ch. 4 - Prob. 19RQCh. 4 - What three pieces of information must be given in...Ch. 4 - 21. How can the poles of a system be found from...Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - MATIAB ML 3. Plot the step responses for Problem 2...Ch. 4 - Find the capacitor voltage in the network shown in...Ch. 4 - For the system shown in Figure P4.3, (a) find an...Ch. 4 - Prob. 8PCh. 4 - MATLAB ML 9. Use MATLAB to find the poles of...Ch. 4 - Find the transfer function and poles of the system...Ch. 4 - MATLAB ML 11. Repeat Problem 10 using MATLAB....Ch. 4 - Write the general form of the capacitor voltage...Ch. 4 - Solve for x(t) in the system shown in Figure P4.5...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Calculate the exact response of each system of...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - For each of the second-order systems that follow,...Ch. 4 - MATLAB ML 21. Repeat Problem 20 using MATLAB. Have...Ch. 4 - GUI Tool GUIT
22. Use MATLAB’s LTI Viewer and...Ch. 4 - Prob. 23PCh. 4 - Find the transfer function of a second-order...Ch. 4 - For the system shown in Figure P4.7, do the...Ch. 4 - For the system shown in Figure P4.8, a step torque...Ch. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - State Space SS 38. A system is represented by the...Ch. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - State Space SS 41. Given the following system...Ch. 4 - State Space SS 42. Solve the following state...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - A MOEMS (optical MEMS) is a MEMS (Micro...Ch. 4 - Prob. 56PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 63PCh. 4 - Prob. 67PCh. 4 - Figure P4.l6 shows the step response of an...Ch. 4 - Figure P4. I 7 shows the free-body diagrams for...Ch. 4 - Find an equation that relates 2% settling time to...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - 76. Find J and K in the rotational system shown in...Ch. 4 - Given the system shown in Figure P4.22, find the...Ch. 4 - Prob. 78PCh. 4 - Find M and K, shown in the system of Figure P4.24,...Ch. 4 - If vi(t) is a step voltage in the network shown in...Ch. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - For the circuit shown in Figure P4.26, find the...Ch. 4 - Prob. 84PCh. 4 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2- Using Matlab, what are the step response curves of the closed-loop system, as shown in fig.1. the feedback represents the second-order dynamic system. (fill in the following table) For=0.4 Wn 1 3 6 9 10 R(S) 0.1 0.3 0.6 0.9 1 For w 5 rad/sec 3 Settling time Peak response 2 Wn s(s+23wn) Settling time Peak response C(s) Discuss the follow Which parameters or w occur on the rise time of the response? Which parameter increases the speed of response? Which parameters can be decreases the response amplitude? Which parameter decreases the steady error state? fig.2arrow_forwardPlease solve the following by hand and without the use of AI. Thank you!arrow_forwardConsider the following Initial Value Problem (IVP) dy /at = -t * sin (y); y(t = 0) =1 Solve for y(t=0.5) using a) Forward Euler method with At = 0.25. (Solve by hand) Develop a Matlab script that solves for y (t = 5) using Forward Euler method. Use the time step levels given below and plot t vs y in the same plot. Include the plot with the right format (axis labels, legends, ...) in your solution sheet and include your Matlab script in the solution as well. i) At = 0.25 ii) At = 0.125 b) Backward Euler method with At = 0.25 (Solve by hand)arrow_forward
- MATLAB support with the following:arrow_forwardI am trying to convert orbital elements to the state vector in MATLAB. My orbital elements are as follows a = 6731; ecc = 0.01; inc = 142.461; raan = 155.9325; argp = 321.0439; f = 145.8291; After transforming them I get : x = 3898.6; y = 3898.6; z = 3957; vx = 5.9771; vy = -4.5575; vz = -1.3245; I am wondering if the transformation is done correctly. Because x, y, and z are defined from earth's radius to the spacecraft, right? If that is the case then x, y, and z should have values greater than the earth's radius. Is my assumption correct?arrow_forwardPlease solve the following by hand and without the use of AI. I am working to understand the step by step procedure of solving this problem so pleaase give a detailed step by step procedure, explaining each part as you go. Thank you!arrow_forward
- Machine 1 Machine m Mm Notation: MIP models for scheduling single stage "m" parallel machines Indices k-machine no.,k € (1.m) 1-job,i € (1.n) 1-job,j e (1. n} Input parameters m= total number of machines n= number of jobs Pprocessing time of job" d,- due date of job " M-large number Decision variables TO_startup time of job " Yu hinary variable, 1:1f job"C precedes job"f in the processing sequence,0: otherwise Wa- himary variable, 1:if job "Tis processed on machine "k",0 otherwise k machine no.,k € {1 - m} 1- Job,Ie (1. . m) 1-Job./E (1.n) M-total number of machines nnumber of Jobs A-processing time of fob "f d- due date of fob " M- large mumber Decision varlables xstartup time of job Yu= binary variable, 1:4f job precedes job " in the processing sequence,0: otherwise W-binary variable, 1:1f fob "C is processed on machine "k", 0: otherwtsearrow_forward1arrow_forwardGiven the trasnfer function G(s) numerator and denominator coefficients for Matlab code should be: O s³+2s+1 2s4+2s²+1' the num= [1 0 2 1] and den=[2 020 1] O num=[1 2 1] and den=[2 0 2 1 1] O num=[1 2 1] and den=[2 2 1] O num=[1 0 2 1] and den=[2 2 0 1]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License