Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 78GP
A jet aircraft is accelerating at 3.8 m/s2 as it climbs at an angle of 18o above the horizontal (Fig. 4-67). What is the total force that the cockpit seat exerts on the 75-kg pilot?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A jet aircraft is accelerating at 3.8 m/s² as it climbs at an
angle of 18° above the horizontal (Fig. 4–67). What is the
total force that the cockpit seat exerts on the 75-kg pilot?
FIGURE 4-67
p0000000000000000
Problem 78.
18°
17. (II) (a) What is the acceleration of two falling sky divers
(total mass = 132 kg including parachute) when the upward
force of air resistance is equal to one-fourth of their weight?
(b) After opening the parachute, the divers descend
leisurely to the ground at constant speed. What now is the
force of air resistance on the sky divers and their parachute?
See Fig. 4-44.
FIGURE 4–44
Problem 17.
A 16
b
a
m₂ = 2.00 kg.
37 Two blocks are connected by a string and are pulled
vertically upward by a force of 165 N applied to the
upper block, as shown in Fig. 4-42.
(a) Find the tension 7 in the string connecting the
blocks.
(b) If the blocks start from rest, what is their velocity
after having moved a distance of 10.0 cm?
F
165 N
2.00 kg
U
T
M
1.00 kg
Fig. 4-42
I
✩
E
AA
Chapter 4 Solutions
Physics
Ch. 4 - A 150-kg football player collides head-on with a...Ch. 4 - A line by the poet T. S. Eliot (from Murder in the...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - Prob. 3QCh. 4 - If the acceleration of an object is zero, are no...Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - (a) Why do you push down harder on the pedals of a...
Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46
Problem 21.
21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider Figure 5.28. The driver attempts to get the car out of the mud by exerting a perpendicular force of 610.0 N, and the distance she pushes in the middle of the rope is 1.00 m while she stands 6.00 m away from the car on the left and 6.00 m away from the tree on the right. What is the tension Tin the rope, and how do you find the answer?arrow_forwardA bear sling, Fig. 4–40, is used in some national parks for placing backpackers' food out of the reach of bears. As the backpacker raises the pack by pulling down on the rope, the force F needed: (a) decreases as the pack rises until the rope is straight across. (b) doesn't change. (c) increases until the rope is straight. (d) increases but the rope always sags where the pack hangs. F FIGURE 4–40 MisConceptual Question 4.arrow_forwardIf cabin is decending vertically with acceleration a and action by mass M on floor of cabin is 9Mg/10 then a equals to:arrow_forward
- What net force is needed to accelerate a 10-kg mass at the rate of 40 m/s2 (neglect all friction): (a) Horizontally?arrow_forwardAs shown in Fig. 4–70, five balls (masses 2.00, 2.05, 2.10, 2.15, 2.20 kg) hang from a crossbar. Each mass is sup- ported by "5-lb test" fishing line which will break when its tension force exceeds 22.2 N (= 5.00 lb). When this device is placed in an elevator, which accelerates upward, only the lines attached to the 2.05 and 2.00 kg masses do not break. Within what range is the elevator's acceleration? 2.20 2.15 2.10 .05 2.00 kg| FIGURE 4-70 Problem 84.arrow_forwardA box rests on the (frictionless) bed of a truck. The truck driver starts the truck and accelerates forward. The box immediately starts to slide toward the rear of the truck bed. Discuss the motion of the box, in terms of Newton's laws, as seen (a) by Mary standing on the ground beside the truck, and (b) by Chris who is riding on the truck (Fig. 4–35). FIGURE 4-35 a Question 2. Воxarrow_forward
- Three mountain climbers who are roped together in a line are ascending an icefield inclined at 31.0° to the horizontal (Fig. 4-69). The last climber slips, pulling the second climber off his feet. The first climber is able to hold them both. If each climber has a mass of 75 kg, calculate the ten- sion in each of the two sections of rope between the three climbers. Ignore friction between the ice and the fallen climbers. 31.0° FIGURE 4-69 Problem 83.arrow_forward(a) What minimum force F is needed to lift the piano (mass M) using the pulley apparatus shown in Fig. 4–66? (b) Determine the tension in each section of rope: Fr1, Fr2, Fr3, and Fr4. Assume pulleys are massless and frictionless, and that ropes are massless. FT3 F72 FTI FT4 F FIGURE 4-66 Problem 76. सarrow_forward65. A 100-kg streetlight is supported equally by two ropes as shown in Figure 4-43. One T 40 40 e rope pulls up and to the right, 40° above the horizon- tal; the other rope pulls up and to the left, 40° above the horizontal. Find the tension in cach rope. SSM Figure 4-43 Problem 65 000arrow_forward
- 2) A wooden block slides directly down an inclined plane, at a constant velocity of 6.0 m/s. What is the coefficient of kinetic friction, if the plane makes an angle of 25e with the horizontal?arrow_forward4-18. Neglecting friction, find the ac- celeration of the system of weights shown in Figure P4-18 if w, = 19.0 lb 15.0 lb. %3D and w2 = FIGURE P4-18 aidel atarrow_forwardDiscuss static and kinetic friction with the aid of Figure 4.7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY