Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 63P
The coefficient of kinetic friction for a 22-kg bobsled on a track is 0.10. What force is required to push it down along a 6.0° incline and achieve a speed of 60 km/h at the end of 75 m?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cyclist coasts up a 10.7 degrees slope, traveling 24.0 m along the road to the top of the hill. If the cyclist's initial speed is 9.70 m/s, what is the final speed? Ignore friction and air resistance.
A sled starts up a 2727 degree incline with a speed of 3.13.1 m/s. The coefficient of kinetic friction is 0.340.34. How far up the incline does the sled travel?
An unattended car of mass 1449 kg starts sliding down a 29.6 degree angle street. If
the coefficient of friction is 0.21, how fast is the car traveling when it reaches the
bottom of the 66.1 m long hill?
Chapter 4 Solutions
Physics
Ch. 4 - A 150-kg football player collides head-on with a...Ch. 4 - A line by the poet T. S. Eliot (from Murder in the...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - Prob. 3QCh. 4 - If the acceleration of an object is zero, are no...Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - (a) Why do you push down harder on the pedals of a...
Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46
Problem 21.
21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Compare each of the mechanisms listed here with the mechanism for each of the two parts of the acid-catalyzed h...
Organic Chemistry (8th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
58. Is each compound soluble or insoluble? For the soluble compounds, identify the ions present in solution.
a....
Introductory Chemistry (6th Edition)
Dr. Ara B. Dopsis and Dr. C. Ellie Gans are performing genetic crosses on daisy plants. They self-fertilize a b...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A dog with a mass of 57.0 kg slides down a wet slope with negligible friction. The dog starts from rest and has a speed of 3.90 m/s at the bottom. What is the height of the slope (in m)?arrow_forwardA speedboat weighing 644 lbs is powered by a constant force of 40 lbs. Friction between the boat and the water is negligible, but there is wind resistance proportional to the velocity of the boat and is 10 lbs. for a speed of 5 fps. Assuming the boat started from rest, find the speed after 10 sec.arrow_forwardA 2.1 ✕ 103-kg car starts from rest at the top of a 5.3-m-long driveway that is inclined at 18° with the horizontal. If an average friction force of 4.0 ✕ 103 N impedes the motion, find the speed of the car at the bottom of the driveway. m/sarrow_forward
- The kinetic friction force between a 8.1-kg object and a horizontal surface is 72 N. If the initial speed of the object is 74 m/s, what distance will it slide before coming to a stop?arrow_forwardA 2.0 kg wood block is launched up a wooden ramp that is inclined at a 32 ∘ angle. The block's initial speed is 15 m/s . The coefficient of kinetic friction of wood on wood is μk=0.200. What vertical height does the block reach above its starting point? What speed does it have when it slides back down to its starting point?arrow_forwardA block of mass m = 9kg with initial speed of v₂ = 12.3m/s travels a distance d = 10.8m on an inclined plane with = 39° and comes to rest. Determine the coefficient of kinetic friction, μ = ? using two decimal places. Take g = 9.80m/s². Answer: Vi 0arrow_forward
- A 3.00 kg box slides UP a smooth (frictionless) 39-degree hill with an initial speed of 16.0 m/s. To what maximum height above the bottom of the hill does the box reach before stopping?arrow_forwardQuestion 9 of 11 1 Points The coefficient of kinetic friction is / Die koëffisiënt van kinetiese wrywing is: You are pushing a crate on the flat floor of a warehouse. Starting from rest, you apply an horizontal force of 42 N, and attain a speed of 1.7 m/s over a distance 9.5 m. If the crate weighs 15 kg, find the coefficient of kinetic friction between the floor and the crate? Give your answer with 3DDP. ly stoot 'n krat op die plat vloer van 'n pakhuis. Jy begin vanuit rus, en oefen 'n horisontale krag van 42 N op die krat uit, en bereik 'n snelheid van 1.7 m/s oor 'n afstand 9.5 m. As die krat 15 kg weeg, bepaal die koëffisiënt van kinetiese wrywing tussen die vloer en die krat? Gee jou antwoord met 3DDP. Question 10 of 11 1 Pointsarrow_forwardA force of 1.200×10^3 N pushes a man on a bicycle forward. Air resistance pushes against him with a force of 755 N. If he starts from rest and is on a level road, what speed v will he be going after 35.0 m? The mass of the bicyclist and his bicycle is 90.0 kg.arrow_forward
- A skydiver (46 kg) is falling at 27 m/s when she pulls her parachute cord. The parachute slows her down to a safe 3 m/s by providing an average air resistance of 603 N. How far must she fall before she reaches this safe speed?arrow_forwardStarting at rest, a mass of 2.50 kg slides down an incline of 65.0 degrees. If the coefficient of kinetic friction is known to be 0.435, what is the speed of the mass after sliding 2.50 m down the incline. Answer Choices: 4.81 m/s 7.08 m/s 21.2 m/s 5.95 m/s 6.84 m/s 8.24 m/sarrow_forwardA skier starts going down a rocky hill that is inclined 30 degrees from the horizontal. It is 2 km long, and he starts with an initial speed of 5 m/s down the hill. If the coefficient of kinetic friction between his skis and the hill is 0.7: Does he make it to the bottom? If so, how long does it take?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY