Physics
Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 23P

Arlene is to walk across a “high wire" strung horizontally between two buildings 10.0 m apart. The sag in the rope when she is at the midpoint is 10.0°, as shown in Fig. 4-47. If her mass is 50.0 kg, what is the tension in the rope at this point?

Chapter 4, Problem 23P, Arlene is to walk across a “high wire" strung horizontally between two buildings 10.0 m apart. The
Figure 4-47
Problem 23.

Blurred answer
04:52
Students have asked these similar questions
4-54. The spool has a mass of 200 kg and rests against the wall and on the floor. If the coefficient of static friction at B is (4)e = 0.3, the coefficient of kinetic friction is (He)B = 0.2, and the wall is smooth, determine the friction force developed at B when the vertical force applied to the cable is P= 80 N. 0.4 m 0.1 m
A stone hangs by a fine thread from the ceiling, and a section of the same thread dangles from the bottom of the stone (Fig. 4–36). If a person gives a sharp pull on the dangling thread, where is the thread likely to break: below the stone or above it? What if the person gives a slow and steady pull? Explain your answers. FIGURE 4-36 Question 9.
The 70.0-kg climber in Fig. 4-72 is supported in the “chimney" by the friction forces exerted on his shoes and back. The static coefficients of friction between his shoes and the wall, and between his back and the wall, are 0.80 and 0.60, respectively. What is the minimum normal force he must exert? Assume the walls are ver- tical and that the static friction forces are both at their maximum. Ignore his grip on the rope. FIGURE 4–72 Problem 89.

Chapter 4 Solutions

Physics

Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46 Problem 21. 21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY