Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 29P
At the instant a race began, a 65-kg sprinter exerted a force of 720 N on the starting block at a 22° angle with respect to the ground. (a) What was the horizontal acceleration of the sprinter? (b) If the force was exerted for 0.32 s, with what speed did the sprinter leave the starting block?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A box with a mass of 5 kg accelerates its speed in a straight line, increasing it from 5 m/s to 8 m/s, due to the application of an external force acting for a duration of 2.0 s. Calculate the average strength of this force.
A 40 kg wooden crate is being pulled across a wooden surface by a force (of magnitude F) that is angled 20° above the horizontal. The coefficient of static friction is 0.5 and the coefficient of kinetic friction is 0.3.
(a)Calculāte the minimum force F (in N) that must be exerted to get the crate moving.
(b)What is the acceleration (in m/s?) of the crate once it starts to move, if that force (F) is maintained?
Two teams of nine members each engage in a tug of war. Each of the first team’s members has an average mass of 61 kg and exerts an average force of 1359 N horizontally. Each of the second team’s members has an average mass of 73 kg and exerts an average force of 1363 N horizontally.
(a) What is the acceleration of the two teams? Give this as a positive value.
(b) What is the tension in the section of rope between the teams?
Chapter 4 Solutions
Physics
Ch. 4 - A 150-kg football player collides head-on with a...Ch. 4 - A line by the poet T. S. Eliot (from Murder in the...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - Prob. 3QCh. 4 - If the acceleration of an object is zero, are no...Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - (a) Why do you push down harder on the pedals of a...
Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46
Problem 21.
21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the vector components of the position of a particle moving in the xy plane as a function of time are x(t)=(2.5ms2)t2i and y(t)=(5.0ms3)t3j, when is the angle between the net force on the particle and the x axis equal to 45?arrow_forwardA black widow spider hangs motionless from a web that extends vertically from the ceiling above. If the spider has a mass of 1.5 g, what is the tension in the web?arrow_forwardTwo teams of nine members each engage in a tug of war. Each of the first team's members has an average mass of 68 kg and exerts an average force of 1350 N horizontally. Each of the second team's members has an average mass of 73 kg and exerts an average force of 1375 N horizontally. (a) What is the acceleration (in m/s? in the direction the heavy team is pulling) of the two teams? 0.18 v m/s? in the direction the heavy team is pulling (b) What is the tension (in N) in the section of rope between the teams? 12639.6 X Narrow_forward
- A skater with an initial speed of 6.80 m/s stops propelling himself and begins to coast across the ice, eventually coming to rest. Air resistance is negligible. (a) The coefficient of kinetic friction between the ice and the skate blades is 0.0700. Find the deceleration caused by kinetic friction. (b) How far will the skater travel before coming to rest?arrow_forwardA 1370 kg car is skidding to a stop along a horizontal surface. The car decelerates from 25 m/s to a rest position in 2.0 seconds. Assuming negligible air resistance, determine (a) how much force is applied by the brake to stop? (b) what is the weight of the car?arrow_forwardTwo blocks are in contact on a frictionless table. A horizontal force is applied to the larger block, as . (a) If m1 2.3 kg, m2 1.2 kg, and F = 3.2 N, find the magnitude of the force between the two blocks. (b) Show that if a force of the same magnitude F is applied to the smaller block but in the opposite direction, the magnitude of the force between the blocks is 2.1 N, which is not the same value calculated in (a). (c) Explain the difference.arrow_forward
- A mass of 2.9 kg is on a horizontal surface. An applied force of 33 N at an angle of -36.5 degrees with respect to the horizontal acts on the mass. What normal force does the surface exert on the mass? (Assume that gravity is in the system)arrow_forwardTwo teams of nine members each engage in a tug of war. Each of the first team's members has an average mass of 72 kg and exerts an average force of 1350 N horizontally. Each of the second team's members has an average mass of 77 kg and exerts an average force of 1373 N horizontally. (a) What is the acceleration (in m/s2 in the direction the heavy team is pulling) of the two teams?arrow_forwardA hockey puck is hit on a frozen lake and starts moving with a speed of 12.3 m/s. Five seconds later, its speed is 6.60 m/s. (a) What is its average acceleration? (b) What is the average value of the coefficient of kinetic friction between puck and ice? (c) How far does the puck travel during the 5.00 s interval?arrow_forward
- A car with a mass of 1.3x10° kg is skidding to a stop along a horizontal surface. The car decelerates from 33 m/s to rest in 3.9 seconds. Assuming negligible air resistance, determine the coefficient of friction between the car tires and the road surface.arrow_forwardA skater with an initial speed of 5.90m/s stops propelling himself and begins to coast across the ice, eventually coming to rest. Air resistance is negligible. (a) The coefficient of kinetic friction between the ice and the skate blades is 0.125. Find the deceleration caused by kinetic friction. (b) How far will the skater travel before coming to rest?arrow_forwardA net force of 3,000.0 N accelerates a car from rest to 37.4 km/h in 5.00 s. (a) What is the mass of the car? (b) What is the weight of the car? (а) т%3 x 10° kg sa (b) w = × 10ª N Nextarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY