Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 25P
One 3.2-kg paint bucket is hanging by a massless cord from another 3.2-kg paint bucket, also hanging by a massless cord, as shown in Fig. 4-49 (a) If the buckets are at rest, what is the tension in each cord? (b) If the two buckets are pulled upward with an acceleration of 1.25 m/s2by the upper cord, calculate the tension in each cord.
Figure 4-49
Problem 25
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule08:32
Students have asked these similar questions
The 70.0-kg climber in Fig. 4-72 is supported in the
“chimney" by the friction forces exerted on his shoes and
back. The static coefficients of friction between his shoes
and the wall, and between his
back and the wall, are 0.80 and
0.60, respectively. What is the
minimum normal force he must
exert? Assume the walls are ver-
tical and that the static friction
forces are both at their maximum.
Ignore his grip on the rope.
FIGURE 4–72
Problem 89.
26E. Refer to Fig. 5-15 and suppose the two masses are m
2.0 kg and M = 4.0 kg. (a) Decide without any calculations
which of them should be hanging if the magnitude of the acceler-
ation is to be largest. What then are (b) the magnitude of the
acceleration and (c) the associated tension in the cord?
Three mountain climbers who are roped together in a line
are ascending an icefield inclined at 31.0° to the horizontal
(Fig. 4-69). The last climber slips, pulling the second
climber off his feet. The first climber is able to hold them
both. If each climber has a mass of 75 kg, calculate the ten-
sion in each of the two sections of rope between the three
climbers. Ignore friction between the ice and the fallen
climbers.
31.0°
FIGURE 4-69 Problem 83.
Chapter 4 Solutions
Physics
Ch. 4 - A 150-kg football player collides head-on with a...Ch. 4 - A line by the poet T. S. Eliot (from Murder in the...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - Prob. 3QCh. 4 - If the acceleration of an object is zero, are no...Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - (a) Why do you push down harder on the pedals of a...
Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46
Problem 21.
21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. List the subdivisions of the thoracic and abdominopelvic cavities.
Human Anatomy & Physiology (2nd Edition)
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Draw the enol tautomers for each of the following compounds. For compounds that have more than one enol tautome...
Organic Chemistry (8th Edition)
In Figure 12.14, why do the nuclei resulting from experiment 2 contain different amounts of DNA?
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 3.00-kg object undergoes an acceleration given by a=(2.00i+5.00j)m/s2. Find (a) the resultant force acting on the object and (b) the magnitude of the resultant force.arrow_forward1 kg is found A block of mass m = on an inclined plane that makes an angle 30° with the horizontal. The coefficient of static friction and coef- ficient of kinetic friction between the block and the incline are: µs and uk = 0.5. Take the positive di- rection to be up the inclined plane 0.6 %3D 130° With the block initially at rest, the acceleration of the block isarrow_forwardA 16 b a m₂ = 2.00 kg. 37 Two blocks are connected by a string and are pulled vertically upward by a force of 165 N applied to the upper block, as shown in Fig. 4-42. (a) Find the tension 7 in the string connecting the blocks. (b) If the blocks start from rest, what is their velocity after having moved a distance of 10.0 cm? F 165 N 2.00 kg U T M 1.00 kg Fig. 4-42 I ✩ E AAarrow_forward
- (II) Arlene is to walk across a “high wire" strung horizontally between two buildings 10.0 m apart. The sag in the rope when she is at the midpoint is 10.0°, as shown in Fig. 4-47. If her mass is 50.0 kg, what is the tension in the rope at this point? 10.0° FIGURE 4-47 Problem 23.arrow_forwardA box rests on the (frictionless) bed of a truck. The truck driver starts the truck and accelerates forward. The box immediately starts to slide toward the rear of the truck bed. Discuss the motion of the box, in terms of Newton's laws, as seen (a) by Mary standing on the ground beside the truck, and (b) by Chris who is riding on the truck (Fig. 4–35). FIGURE 4-35 a Question 2. Воxarrow_forward14. Figure 5-34 shows three blocks being pushed across a frie- tionless floor by horizontal force F. What total mass is acceler- ated to the right by (a) force F, (b) force F, of block 1 on block 2, and (c) force F of block 2 on block 3? (d) Rank the blocks according to their accelerations, greatest first. (e) Rank forces F, F, and F32 according to their magnitude, greatest first. (Warmup for Problem 40) 10 kg 5 kg 2 kg 3.arrow_forward
- 65. A 100-kg streetlight is supported equally by two ropes as shown in Figure 4-43. One T 40 40 e rope pulls up and to the right, 40° above the horizon- tal; the other rope pulls up and to the left, 40° above the horizontal. Find the tension in cach rope. SSM Figure 4-43 Problem 65 000arrow_forwardYou are trying to push your stalled car. Although you applya horizontal force of 400 N to the car, it doesn’t budge, andneither do you. Which force(s) must also have a magnitudeof 400 N?(a) The force exerted by the car on you.(b) The friction force exerted by the car on the road.(c) The normal force exerted by the road on you.(d) The friction force exerted by the road on you.arrow_forwardA force of 300 N is applied to a 20 kg crate at an angle of 30o below the horizontal. Determine the acceleration of the crate as it moves along the horizontal surface. The coefficient of friction between the crate and the surface µk is 0.50.arrow_forward
- 68P. A 5.00 kg block is pulled along a horizontal frictionless floor by a cord that exerts a force F= 12.ON at an angle 6= 25.0 above the horizontal, as shown in Fig. 5-57. (a) What is the acceleration of the block? (b) The force F is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the acceleration of the block just before it is lifted (completely) off the floor? %3D 5.00 25.0 kgarrow_forward3. 53 In Fig. 5-48, three connected blocks are pulled to the right on a horizontal frictionless table by a force of magnitude T, = 65.0 N. If m, = 12.0 kg. m, = 24.0 kg, and m, = 31.0 kg. calculate (a) the magnitude of the system's acceleration, (b) the tension T, and (c) the tension T. T2 T3 Fig. 5-48 Problem 53.arrow_forward* 39 Two blocks connected by a string are on a horizontal frictionless surface. The blocks are connected to a hanging weight by means of a string that passes over a pulley (Fig. 4-44). (a) Find the tension T in the string connecting the two blocks on the horizontal surface. (b) How much time is required for the hanging weight to fall 10.0 cm if it starts from rest? 2,00 kg T 3.00 kg Frictionless Fig. 4-44 Con ford seat ** 43 A b 2.00 the (a) C h 2 is (b) C (t 10 (c) No tha cel upp 5.00 kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY