Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 27P
A train locomotive is pulling two cars of the same mass behind it, Fig. 4-51. Determine the ratio of the tension in the coupling (think of it as a cord) between the locomotive and the first car (FT1), to that between the first car and the second car (FT2), for any nonzero acceleration of the train.
Figure 4-51 Problem 27.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Three mountain climbers who are roped together in a line
are ascending an icefield inclined at 31.0° to the horizontal
(Fig. 4-69). The last climber slips, pulling the second
climber off his feet. The first climber is able to hold them
both. If each climber has a mass of 75 kg, calculate the ten-
sion in each of the two sections of rope between the three
climbers. Ignore friction between the ice and the fallen
climbers.
31.0°
FIGURE 4-69 Problem 83.
27 Go Body A in Fig. 6-33 weighs
102 N, and body B weighs 32 N. The
coefficients of friction between A
and the incline are 0.56 and
P = 0.25. Angle 0 is 40°. Let the
positive direction of an x axis be up,
the incline. In unit-vector notation.
what is the acceleration of A if A is
initially (a) at rest. (b) moving up
the incline, and (c) moving down
the incline?
0
Frictionless,
massle pulley
Figure 6-33
Problems 27 and 28.
In Fig. 6-59, block 1 of mass m1 ? 2.0 kg and block 2 of mass m2 ? 1.0 kg are connected by a string of negligible mass. Block 2 is pushed by force F of magnitude 20 N and angle u ? 35°. The coefficient of kinetic friction between each block and the horizontal surface is 0.20. What is the tension in the string? (please don't copy-paste solution)
Chapter 4 Solutions
Physics
Ch. 4 - A 150-kg football player collides head-on with a...Ch. 4 - A line by the poet T. S. Eliot (from Murder in the...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - Prob. 3QCh. 4 - If the acceleration of an object is zero, are no...Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - (a) Why do you push down harder on the pedals of a...
Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46
Problem 21.
21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
41. A hollow metal sphere has 6 cm and 10 cm inner and outer radii, respectively. The surface charge density on...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Assume that genes, A and B are on the same chromosome and are 50 map units apart. An animal heterozygous at bot...
Campbell Biology (11th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Fig. 6-45, a 1.34 kg ball is connected by means of two massless strings, each of length L = 1.70 m, to a vertical, rotating rod. The strings are tied to the rod with separation d = 1.70 m and are taut. The tension in the upper string is 35 N. What are the (a) tension in the lower string, (b) magnitude of the net force on the ball, and (c) speed of the ball? (d) What is the direction of ?arrow_forward4-54. The spool has a mass of 200 kg and rests against the wall and on the floor. If the coefficient of static friction at B is (4)e = 0.3, the coefficient of kinetic friction is (He)B = 0.2, and the wall is smooth, determine the friction force developed at B when the vertical force applied to the cable is P= 80 N. 0.4 m 0.1 marrow_forwardBody A in Fig. 6-33 weighs 102 N, and body B weighs 32 N. The coefficients of friction between A and the incline are µs =0.56 and µk =0.25. Angle θ is 40. Let the positive direction of an x-axis be up the incline. In unit-vector notation, what is the acceleration of A if A is initially (a) at rest, (b) moving up the incline, and (c) moving down the incline.arrow_forward
- Block B in Fig. 6-31 weighs 711 N.The coefficient of static friction between block and table is 0.25; angle u is 30; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary.arrow_forward15-7. Crates A and B weigh 100 lb and 50 lb, respectively. If they start from rest, determine their speed when t = 5 s. Also, find the force exerted by crate A on crate B during the motion. The coefficient of kinetic friction between the crates and the ground is µ = 0.25. A P = 50 lbarrow_forwardA 2.20 kg block is initially at rest on a horizontal surface. A horizontal force of magnitude 4.83 N and a vertical force are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are µs = 0.4 and µk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of is (a) 8.00 N and (b) 12.0 N. (The upward pull is insufficient to move the block vertically.)arrow_forward
- A book of mass m, = 1.6 kg is stacked on another book of mass m2 = 2.8 kg, which rests on a friction-less smooth table, If the coefficient of friction between the blocks is u =0.1, Then the maximum force that can be applied to m2 so that m, may not slide is: m, m2arrow_forwardIn Fig. 6-23, a sled is held on an inclined plane by a cord pulling directly up the plane. The sled is to be on the verge of moving up the plane. In Fig. 6- 28, the magnitude F required of the cord’s force on the sled is plotted versus a range of values for the coefficient of static friction ms between sled and plane: F1 = 2.0 N, F2 = 5.0 N, and m2 = 0.50. At what angle u is the plane inclined?arrow_forward3. 53 In Fig. 5-48, three connected blocks are pulled to the right on a horizontal frictionless table by a force of magnitude T, = 65.0 N. If m, = 12.0 kg. m, = 24.0 kg, and m, = 31.0 kg. calculate (a) the magnitude of the system's acceleration, (b) the tension T, and (c) the tension T. T2 T3 Fig. 5-48 Problem 53.arrow_forward
- 5arrow_forward88 In Fig. 6-59, block 1 of mass m = 2.0 kg and block 2 of mass m2 = 1.0 kg are connected by a string of negligible mass. Block 2 is pushed by force F of magnitude 20 N and angle 0= 35°.The coef- %3D %3D %3D ficient of kinetic friction between each block and the horizontal surface is 0.20. What is the tension in the string? Fig. 6-59 Problem 88.arrow_forwardA book of mass m, = 1.8 kg is stacked on another book of mass m2 = 2.8 kg, which rests on a friction-less smooth table, If the coefficient of friction between the blocks is u =0.3, Then the maximum force that can be applied to m2 so that m, may not slide is: m1 m2 F Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY