Physics
7th Edition
ISBN: 9780321733627
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 24P
A window washer pulls herself upward using the bucket-pulley apparatus shown in Fig.4-48. (a) How hard must she pull downward to raise herself slowly at constant speed? (b) if she increases this force by 15%, what will her acceleration be? The mass of the person plus the bucker is 72 kg.
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule04:12
Students have asked these similar questions
The block shown in Fig. 4-59 has mass m=7.0 kg and lies on a fixed smooth frictionless plane tilted at an angle (theta)= 22.0 degrees to the horizontal. (a) Determine the acceleration of the block a step it slides down the plane. (b) If the block starts from rest 12.0m up the plane from its base, what will be the block’s speed when it reaches the bottom of the incline?
The normal force on an extreme skier descending a very steep slope (Fig. 4–42) can be zero if(a) his speed is great enough.(b) he leaves the slope (no longer touches the snow).(c) the slope is greater than 75°.(d) the slope is vertical (90°).
Body A in Fig. 6-33 weighs 102 N, and body B weighs 32 N. The coefficients of friction between A and the incline are µs =0.56 and µk =0.25. Angle θ is 40. Let the positive direction of an x-axis be up the incline. In unit-vector notation, what is the acceleration of A if A is initially (a) at rest, (b) moving up the incline, and (c) moving down the incline.
Chapter 4 Solutions
Physics
Ch. 4 - A 150-kg football player collides head-on with a...Ch. 4 - A line by the poet T. S. Eliot (from Murder in the...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - Prob. 3QCh. 4 - If the acceleration of an object is zero, are no...Ch. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - (a) Why do you push down harder on the pedals of a...
Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - A truck is traveling horizontally to the right...Ch. 4 - You are trying to push your stalled car. Although...Ch. 4 - Matt, in the foreground of Fig. 4-39, is able to...Ch. 4 - A bear sling, Fig. 4-40, is used in some national...Ch. 4 - What causes the boat in Fig. 4-41 to move forward?...Ch. 4 - A person stands on a scale in an elevator. His...Ch. 4 - When a skier skis down a hill, the normal force...Ch. 4 - A golf ball is hit with a golf club. While the...Ch. 4 - Suppose an object is accelerated by a force of 100...Ch. 4 - You are pushing a heavy box across a rough floor....Ch. 4 - Prob. 11MCQCh. 4 - The normal force on an extreme skier descending a...Ch. 4 - To pull an old stump out of the ground, you and a...Ch. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46
Problem 21.
21. (I) Draw the free-body...Ch. 4 - Prob. 22PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 26PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 28PCh. 4 - At the instant a race began, a 65-kg sprinter...Ch. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 31PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 36PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 51PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - A 2.0-kg purse is dropped from the top of the...Ch. 4 - Prob. 69GPCh. 4 - 70. A 75.0-kg person stands on a scale in an...Ch. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 77GPCh. 4 - A jet aircraft is accelerating at 3.8 m/s2 as it...Ch. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GPCh. 4 - Prob. 90GPCh. 4 - A 72-kg water skier is being accelerated by a ski...Ch. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GPCh. 4 - Prob. 95GPCh. 4 - Prob. 96GPCh. 4 - Prob. 97GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Compare and contrast the carbon, sulfur, and nitrogen cycles in terms of the physiologies of the organisms that...
Brock Biology of Microorganisms (15th Edition)
90. Classify each chemical reaction as a synthesis, decomposition, single-displacement, or double-displacement ...
Introductory Chemistry (6th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Choose the best answer to etch of the following. Explain your reasoning. Which of these stars is the most massi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The crate shown in Fig. 4-60 lies on a plane tilted at an angle (theta)= 25.0 degrees to the horizontal, with (mu-of-k)= 0.19. (a) Determine the acceleration of the crate as it slides down the plane. (b) If the crate starts from rest 8.15 m up along the plane from its base, what will be the crate’s speed when it reaches the bottom of the incline?arrow_forwardThe 70.0-kg climber in Fig. 4-72 is supported in the “chimney" by the friction forces exerted on his shoes and back. The static coefficients of friction between his shoes and the wall, and between his back and the wall, are 0.80 and 0.60, respectively. What is the minimum normal force he must exert? Assume the walls are ver- tical and that the static friction forces are both at their maximum. Ignore his grip on the rope. FIGURE 4–72 Problem 89.arrow_forwardThere are nine books in a stack, each with a weight of 10 N. The coefficient of friction between all the books is 0.45 as is the coefficient between the table and the bottom book. What horizontal push must I just exceed on the next to the bottom book to start sliding the top eight books off the bottom one?arrow_forward
- Three mountain climbers who are roped together in a line are ascending an icefield inclined at 31.0° to the horizontal (Fig. 4-69). The last climber slips, pulling the second climber off his feet. The first climber is able to hold them both. If each climber has a mass of 75 kg, calculate the ten- sion in each of the two sections of rope between the three climbers. Ignore friction between the ice and the fallen climbers. 31.0° FIGURE 4-69 Problem 83.arrow_forwardA car weighs 1100kg and can accelerate from 0 to 60m/h in 7.1 seconds on a flat ground. what is the steepest grade your driveway can be if your house is located on a hill? Assume no friction forces, and approximate the driveway as a straight inclined plane.arrow_forwardA horizontal force of 200 N is used to push a 50.0-kg packing crate a distance of 6.00 m on a rough horizontal surface. If the crate moves at constant speed, the coefficient of kinetic friction between the crate and surface.arrow_forward
- (2) A force with magnitude 8.86 N pushes three boxes with masses m₁ = 1.30 kg, m2 = 3.20 kg, and m3 = 4.90 kg, as shown in the figure below. The surface the boxes are sliding on is so slippery that the surface can be considered to be frictionless. (a) Calculate the force that boxes 1 and 2 exert on each other and the force that boxes 2 and 3 exert on each other. [answer: F2-on-1 = F1-on-2 = 7.63 N; F3-on-2 = F2-on-3 = 4.62 N]. (b) To obtain the values of F1-on-2 and F3-on-2 in (a), you needed to assume that Newton's 3rd Law is valid. If you examine the FBD for m2, you should see that F1-on-2-F3-on-2= m2a. Verify the validity of Newton's 3rd Law by showing that the values of F1-on-2 - F3-on-2 and m2a are indeed equal. [answer: They are both equal to 3.0 N.] Fnet = ma F = 8.86 N 1.30 kg 3.20 kg t 4.90 kgarrow_forward4-61. The drum has a weight of 500 N and rests on the floor for which the coefficient of static friction is 4, = 0.5. If a = 0.9 m and b= 1.2 m, determine the smallest magnitude of the force P that will cause impending motion of the drum.arrow_forwardSuppose you have a 120 kg wooden crate resting on a wood floor, with coefficient of static friction 0.500 between these wood surfaces. (a) What maximum force can you exert horizontally on the crate without moving it? (b) If you continue to exert this force once the crate starts to slip, what will its acceleration then be? The coefficient of sliding friction is known to be 0.300 for this situation.arrow_forward
- Two masses are hang over an ideal pulley using a rope. One mass is m1=120N and the other is m2=63N. Determine the tension of the rope when: (a) You hold m2 so that it won't mave: (b) You release m2 and m1 descends: (c) m1 lands and the two buckets come to rest.arrow_forwardCalculate the Tensions, and Accelerations of blocks 1 and 2 if m1= 5 kg and m2 = 6 kgarrow_forwardTwo blocks of unequal mass are connected by a string over a smooth pulley (Figure 2 B). If the coefficient of kinetic friction is μk, what angle θ of the incline allows the masses to move at a constant speed? FIGURE 2-B Problem 2-32.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY