Concept explainers
Write the ground-state electron configurations of the following ions, which play important roles in various biological processes: (a) Fe2+, (b) Cu2+, (c) Co2+, (d) Mn2+.
(a)
Interpretation: Ground-state electronic configuration of the given set of ions which plays important roles in biochemical process in our bodies has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
Answer to Problem 4.71QP
Answer
The ground-state electronic configuration of (a) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(b)
Interpretation: Ground-state electronic configuration of the given set of ions which plays important roles in biochemical process in our bodies has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
Answer to Problem 4.71QP
Answer
The ground-state electronic configuration of (b) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(c)
Interpretation: Ground-state electronic configuration of the given set of ions which plays important roles in biochemical process in our bodies has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
Answer to Problem 4.71QP
Answer
The ground-state electronic configuration of (c) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(d)
Interpretation: Ground-state electronic configuration of the given set of ions which plays important roles in biochemical process in our bodies has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
Answer to Problem 4.71QP
Answer
The ground-state electronic configuration of (d) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: Atoms First
- ADDITIONAL PRACTICE PRACTICE Problems Write formulas for ionic compounds composed of the following ions. Use units as a guide to your solutions. 24. sodium and nitrate 25. calcium and chlorate 26. aluminum and carbonate 27. CHALLENGE Write the formula for an ionic compound formed by ions from a group 2 element and polyatomic ions composed of only carbon and oxygen. ounds 1998arrow_forward7:35 < Dji Question 19 of 22 5G 50% Submit What is the pH of a buffer made from 0.350 mol of HBrO (Ka = 2.5 × 10-9) and 0.120 mol of KBRO in 2.0 L of solution? | 1 2 3 ☑ 4 5 6 C 7 8 ☐ 9 +/- Tap here for additional resources ||| 0 ×10 Гarrow_forwardaw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. B C Br HO O Substitution will not occur at a significant rate. Explanation Check + Х Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibarrow_forward
- Complete the following reactions with the necessary reagents to complete the shown transformation. Example: 1. 2. ? 3. 018 Br OH Answer: H₂O, H2SO4, HgSO4arrow_forward7:34 • < Question 18 of 22 5G 50% Submit What is the pH of a buffer made from 0.220 mol of HCNO (Ka = 3.5 × 10-4) and 0.410 mol of NaCNO in 2.0 L of solution? 1 2 3 ☑ 4 5 6 C 7 8 | 9 +/- 0 ×10 Tap here for additional resources ||| Гarrow_forward6:46 ✔ 5G 58% < Question 7 of 22 Submit What is the primary species in solution at the halfway point in a titration of NH3 with HBr? A NH3 and H+ B NH₁+ and H+ C NH4+ D NH3 and NH4+ Tap here for additional resources |||arrow_forward
- 6:49 Dji < Question 15 of 22 4G 57% Submit The pOH of a solution is 10.50. What is the OH- concentration in the solution? A 3.2 × 10-4 M B C 3.2 x 10-11 M 10.50 M D 4.2 M E 3.50 M Tap here for additional resources |||arrow_forwardヨ 6:49 Dji < Question 13 of 22 5G 57% Submit The pH of a solution is 2.40. What is the H+ concentration in the solution? A B 2.5 x 10-12 M 4.0 × 10-3 M C 2.40 M D 4.76 M 11.60 M Tap here for additional resources |||arrow_forwardヨ C 6:48 Di✔ < Question 12 of 22 5G 57% Submit The pH of a solution is 12.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 9.25 M 12.50 M Tap here for additional resources |||arrow_forward
- ヨ C 6:48 Di✔ < Question 11 of 22 5G 57% Submit The pH of a solution is 1.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 2.15 M 12.50 M Tap here for additional resources |||arrow_forwardSelect the product of the following reaction. Lon HO Meat ?? CH₂OH OH A D OH OCH B OH of OCH of CH חח E C CHarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,