
(a)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To define valence electrons
(a)

Explanation of Solution
(b)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of Na
(b)

Explanation of Solution
Na has one valence electron and it belongs to group 1A
Hence the number of valence electron is equal to the group number is proved.
(c)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of Ca
(c)

Explanation of Solution
Na has 2 valence electrons and it belongs to group 2A
Hence the number of valence electron is equal to the group number is proved.
(d)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of lithium
(d)

Explanation of Solution
Na has 1 valence electrons and it belongs to group 1A
Hence the number of valence electron is equal to the group number is proved.
(e)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of iodine
(e)

Explanation of Solution
Iodine has 7 valence electrons and it belongs to group 7A
Hence the number of valence electron is equal to the group number is proved.
(f)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of nitrogen
(f)

Explanation of Solution
Nitrogen has 5 valence electrons and it belongs to group 5A
Hence the number of valence electron is equal to the group number is proved.
(g)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of selenium
(g)

Explanation of Solution
Se has 6 valence electrons and it belongs to group 6A
Hence the number of valence electron is equal to the group number is proved.
(h)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of Si
(h)

Explanation of Solution
Hence the number of valence electron is equal to the group number is proved.
Valence electrons have defined, electronic configuration of the given elements has been written and the number of valence electron is equal to the group number has been proved.
Pair 1: (a)
Pair 2: (b)
Pair 3: (c)
(a)
To Know the reactivity of an element (a) with ‘
(a)

Explanation of Solution
(b)
To Know the reactivity of an element (b) with ‘
(b)

Explanation of Solution
(c)
To Know the reactivity of an element (c) with ‘
(c)

Explanation of Solution
(d)
To Know the reactivity of an element (d) with ‘
(d)

Explanation of Solution
(e)
To Know the reactivity of an element (e) with ‘
(e)

Explanation of Solution
(f)
To Know the reactivity of an element (f) with ‘
(f)

Explanation of Solution
(g)
To group the properties of the elements with given electron configuration
(g)

Explanation of Solution
Pair 1: (a)
Pair 2: (b)
Pair 3: (c)
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: Atoms First
- 14. Calculate the concentrations of Ag+, Ag(S2O3), and Ag(S2O3)23- in a solution prepared by mixing 150.0 mL of 1.00×10-3 M AgNO3 with 200.0 mL of 5.00 M Na2S2O3 Ag+ + S20 Ag(S203)¯ K₁ = 7.4 × 108 Ag(S203)¯ + S20¯ = Ag(S203) K₂ = 3.9 x 104arrow_forwardΗΝ, cyclohexanone pH 4-5 Draw Enamine I I CH3CH2Br THF, reflux H3O+ I Drawing Draw Iminium Ionarrow_forward:0: :0: Select to Add Arrows :0: (CH3)2NH :0: ■ Select to Add Arrows :0: :0: (CH3)2NH ■ Select to Add Arrowsarrow_forward
- Draw the product of the following H action sequence. Ignore any inorganic byproducts formed. 1. (CH3CH2)2CuLi, THF 2. CH3Br Q Atoms, Bonds and Rings H Charges ㅁarrow_forwardPlease help me with this the problem is so confusingarrow_forward14 Question (1 point) Disiamylborane adds to a triple bond to give an alkenylborane. Upon oxidation with OH, H2O2, the alkenylborane will form an enol that tautomerizes to an aldehyde. In the first box below, draw the mechanism arrows for the reaction of disiamylborane with the alkyne, and in the last box draw the structure of the aldehyde. 4th attempt Feedback i > 3rd attempt OH, H2O2 i See Periodic Table See Hintarrow_forward
- answer with mechanisms and steps. handwritten please!arrow_forwardHello I need some help with Smartwork. For drawing structure B, I know the correct answer is CH₃B₂, but when I try to type it in, it keeps giving me CH₄BH₃ instead. Do you know how I should write it properly? Should I use a bond or something else?arrow_forwardTrue or false, chemistryarrow_forward
- answer thse questions with mechanisms and steps. handwritten please!arrow_forwardC app.aktiv.com Draw the product of the following reaction sequence. Ignore any inorganic byproducts formed. H O 1. (CH3CH2)2CuLi, THF 2. CH3Br Drawingarrow_forwardDraw the product of the following reaction sequence. Ignore any inorganic byproducts formed. H O 1. (CH3CH2)2CuLi, THF 2. CHзBr Drawingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





