Moles of ion released when 0.805 mol of Rb 2 SO 4 is dissolved in water are to be calculated. Concept introduction: A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution. Ionic compounds are the compounds that are composed of charged ions. They are held together by electrostatic forces. These compounds dissociate into ions when dissolved in water. Rb 2 SO 4 is an example of an ionic compound and dissociate into ions when dissolved in water. The dissociation reaction of Rb 2 SO 4 is: Rb 2 SO 4 ( s ) → 2 Rb + ( a q ) + SO 4 2 − ( a q ) The expression to calculate the moles of ions is as follows: moles of ion of compound ( mol ) = [ ( moles of compound ( mol ) ) ( total moles of ion ( mol ) 1 mole of compound ) ]
Moles of ion released when 0.805 mol of Rb 2 SO 4 is dissolved in water are to be calculated. Concept introduction: A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution. Ionic compounds are the compounds that are composed of charged ions. They are held together by electrostatic forces. These compounds dissociate into ions when dissolved in water. Rb 2 SO 4 is an example of an ionic compound and dissociate into ions when dissolved in water. The dissociation reaction of Rb 2 SO 4 is: Rb 2 SO 4 ( s ) → 2 Rb + ( a q ) + SO 4 2 − ( a q ) The expression to calculate the moles of ions is as follows: moles of ion of compound ( mol ) = [ ( moles of compound ( mol ) ) ( total moles of ion ( mol ) 1 mole of compound ) ]
Moles of ion released when 0.805mol of Rb2SO4 is dissolved in water are to be calculated.
Concept introduction:
A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution.
Ionic compounds are the compounds that are composed of charged ions. They are held together by electrostatic forces. These compounds dissociate into ions when dissolved in water. Rb2SO4 is an example of an ionic compound and dissociate into ions when dissolved in water. The dissociation reaction of Rb2SO4 is:
Rb2SO4(s)→2Rb+(aq)+SO42−(aq)
The expression to calculate the moles of ions is as follows:
moles ofion of compound(mol)=[(moles of compound(mol))(total moles of ion(mol)1mole of compound)]
(b)
Interpretation Introduction
Interpretation:
Moles of ion released when 3.85×10−3g of Ca(NO3)2 is dissolved in water is to be calculated.
Concept introduction:
A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution.
Ionic compounds are the compounds that are composed of charged ions. They are held together by electrostatic forces. These compounds dissociate into ions when dissolved in water. Ca(NO3)2 is an example of an ionic compound and dissociate into ions when dissolved in water. The dissociation reaction of Ca(NO3)2 is:
Ca(NO3)2(s)→Ca2+(aq)+2NO3−(aq)
The expression to calculate the moles of ions in a compound is as follows:
moles of ions in compound(mol)=[(given mass of compound(g))(1 mole of compoundmolecular mass of compound(g))(total moles of ion(mol)1mole of compound)]
(c)
Interpretation Introduction
Interpretation:
Moles of ion released when 4.03×1019 formula unit of Sr(HCO3)2 is dissolved in water are to be calculated.
Concept introduction:
A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution.
Ionic compounds are the compounds that are composed of charged ions. They are held together by electrostatic forces. These compounds dissociate into ions when dissolved in water. Sr(HCO3)2 is an example of an ionic compound and dissociate into ions when dissolved in water. The dissociation reaction of Sr(HCO3)2 is:
Sr(HCO3)2(s)→Sr2+(aq)+2HCO3−(aq)
A formula unit is used for the ionic compound to represent their empirical formula. The expression to calculate the moles of ions in a compound is as follows:
moles of ions in a compound(mol)=[(given formula unit of compound(FU))(1 mole of compound6.022×1023FU)(total moles of ion(mol)1mole of compound)]
A block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcus
Potential Energy (kJ)
1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.
AH = -950 kJ
AH = 575 kJ
(i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s)
Ea = 1550 kJ
(ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s)
(iii) Cl (g) + CICO (g) → Cl₂CO (g)
Ea = 2240 kJ
Ea = 2350 kJ
AH = -825 kJ
2600
2400
2200
2000
1800
1600
1400
1200
1000
a. Draw the potential energy diagram for the reaction. Label the data points for clarity.
The potential energy of the reactants is 600 kJ
800
600
400
200
0
-200-
-400
-600-
-800-
Reaction Progress
Can u help me figure out the reaction mechanisms for these, idk where to even start
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.