
(a)
Interpretation:
The possible product and the balanced chemical equation of the following
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
(b)
Interpretation:
The possible product and the balanced chemical equation of the following redox reaction are to be written.
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
(c)
Interpretation:
The possible product and the balanced chemical equation of the following redox reaction are to be written.
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
(d)
Interpretation:
The possible product and the balanced chemical equation of the following redox reaction are to be written.
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
A combustion reaction is that reaction in which reactant is reacted with molecular oxygen to form the product. Heat is released and the energy is produced in the reaction. Molecular oxygen is employed as an oxidizing agent in these reactions.
(e)
Interpretation:
The balanced net ionic equation for the following reaction is to be written.
Concept introduction:
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Show by chemical equation the reaction of [HCN] and [CH3MgBr] with any alarrow_forwardGive the chemical equation for the preparation of: -Any aldehyde -Any keytonearrow_forward+ C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward
- → Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forwardFor each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forward
- Identifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardAssign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





