The reactant present in excess when 2.22 g of magnesium is heated to 3.75 g of nitrogen is to be identified. Concept introduction: The redox reaction can be classified into three types depending upon the number of reactants and products as follows: 1. Combination redox reaction 2. Decomposition redox reaction 3. Displacement redox reactions Combination redox reactions are the reactions in which two or more reactants combine to form a single product. In displacement redox reactions, substances on both sides of the equation remain the same but the atoms exchange places in order to form the product while in decomposition reaction, one compound decomposes to form one or more product. A limiting reagent is the one that is completely consumed in a chemical reaction . The amount of product formed in any chemical reaction has to be in accordance with the limiting reagent of the reaction. The amount of product depends on the amount of limiting reagent since the product formation is not possible in the absence of it.
The reactant present in excess when 2.22 g of magnesium is heated to 3.75 g of nitrogen is to be identified. Concept introduction: The redox reaction can be classified into three types depending upon the number of reactants and products as follows: 1. Combination redox reaction 2. Decomposition redox reaction 3. Displacement redox reactions Combination redox reactions are the reactions in which two or more reactants combine to form a single product. In displacement redox reactions, substances on both sides of the equation remain the same but the atoms exchange places in order to form the product while in decomposition reaction, one compound decomposes to form one or more product. A limiting reagent is the one that is completely consumed in a chemical reaction . The amount of product formed in any chemical reaction has to be in accordance with the limiting reagent of the reaction. The amount of product depends on the amount of limiting reagent since the product formation is not possible in the absence of it.
Definition Definition Chemical reactions involving both oxidation and reduction processes. During a redox reaction, electron transfer takes place in such a way that one chemical compound gets reduced and the other gets oxidized.
Chapter 4, Problem 4.116P
(a)
Interpretation Introduction
Interpretation:
The reactant present in excess when 2.22 g of magnesium is heated to 3.75 g of nitrogen is to be identified.
Concept introduction:
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
Combination redox reactions are the reactions in which two or more reactants combine to form a single product. In displacement redox reactions, substances on both sides of the equation remain the same but the atoms exchange places in order to form the product while in decomposition reaction, one compound decomposes to form one or more product.
A limiting reagent is the one that is completely consumed in a chemical reaction. The amount of product formed in any chemical reaction has to be in accordance with the limiting reagent of the reaction. The amount of product depends on the amount of limiting reagent since the product formation is not possible in the absence of it.
(b)
Interpretation Introduction
Interpretation:
The moles of product formed when 2.22 g of magnesium is heated to 3.75 g of nitrogen
is to be calculated.
Concept introduction:
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
Combination redox reactions are the reactions in which two or more reactants combine to form a single product. In displacement redox reactions, substances on both sides of the equation remain the same but the atoms exchange places in order to form the product while in decomposition reaction, one compound decomposes to form one or more product.
A limiting reagent is the one that is completely consumed in a chemical reaction. The amount of product formed in any chemical reaction has to be in accordance with the limiting reagent of the reaction. The amount of product depends on the amount of limiting reagent since the product formation is not possible in the absence of it.
(c)
Interpretation Introduction
Interpretation:
The mass of each reactant and product after the reaction is to be calculated.
Concept introduction:
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
Combination redox reactions are the reactions in which two or more reactants combine to form a single product. In displacement redox reactions, substances on both sides of the equation remain the same but the atoms exchange places in order to form the product while in decomposition reaction, one compound decomposes to form one or more product.
A limiting reagent is the one that is completely consumed in a chemical reaction. The amount of product formed in any chemical reaction has to be in accordance with the limiting reagent of the reaction. The amount of product depends on the amount of limiting reagent since the product formation is not possible in the absence of it.
Wavelength (nm)
I'm not sure what equation I can come up with other than the one generated with my graph. Can you
please show me the calculations that were used to find this equation?
Give an equation that relates energy to wavelength. Explain how you arrived at your equation.
Wavelength Energy (kJ/mol)
(nm)
350
341.8
420
284.8
470
254.5
530
225.7
580
206.3
620
192.9
700
170.9
750
159.5
Energy vs. Wavelength (Graph 1)
400
350
y=-0.4367x+470.82
300
250
200
150
100
50
O
0
100
200
300
400
500
600
700
800
Energy (kJ/mol)
6. For the following molecules: draw Lewis dot-structures; use VSEPR method to determine
geometries of the following molecules/ions. Are the central atoms in these molecules/ions
considered of normal valency, or are they hypervalent? (please read paragraph 2.6)
a) BrF3
(6 points)
b) BrF4
c) IF₂
4
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change