College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 20PE
Suppose a 60.0-kg gymnast climbs a rope. (a) What is the tension in the rope if he climbs at a constant speed? (b) What is the tension in the rope if he accelerates upward at a rate of 1.50 m/s2?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Suppose a 60.0-kg gymnast climbs a rope. (a) What is the tension in the rope if he climbs at a constant speed? (b) What is the tension in the rope if he accelerates upward at a rate of 1.50 m/s?
A 45 kg box hangs from a rope. What is the tension in the rope if:(a) the box is at rest?(b) the box is rising with a constant velocity of 4.0 m/s?(c) the box is rising and speeding up at 4.5 m/s2?
Two blocks are sliding down a 30◦ incline. The first block is 2 kg and has a kinetic friction coefficient of .10. The second block - which is connected to the first block by a rope - is 1 kg with a kinetic friction coefficient of .20. What is the tension in the string?
Chapter 4 Solutions
College Physics
Ch. 4 - Propose a force standard different from the...Ch. 4 - What properties do forces have that allow us to...Ch. 4 - How are inertia and mass related?Ch. 4 - What is the relationship between weight and mass?...Ch. 4 - Which statement is correct? (a) Net force causes...Ch. 4 - Why can we neglect forces such as those holding a...Ch. 4 - Explain how the choice of the “Stem of interest”...Ch. 4 - Describe a situation in which the net external...Ch. 4 - A system can have a nonzero velocity while the net...Ch. 4 - A rock is thrown straight up. What is the net...
Ch. 4 - (a) Give an example of different net external...Ch. 4 - If the acceleration of a system is zero, are no...Ch. 4 - If a constant, nonzero force is applied to an...Ch. 4 - The gravitational force on the basketball in...Ch. 4 - When you take off in a jet aircraft, there is a...Ch. 4 - A device used since the 1940s to measure the kick...Ch. 4 - Describe a Situation in which one a force on and,...Ch. 4 - Why does an ordinary rifle recoil (kick backward)...Ch. 4 - An American football lineman reasons that it is...Ch. 4 - Newton's third law of motion tells us that forces...Ch. 4 - If a leg is suspended by a traction setup as shown...Ch. 4 - Ina traction setup a broken bone, with pulleys and...Ch. 4 - To simulate the apparent weightlessness of space...Ch. 4 - A cartoon shows the toupee coming off the head of...Ch. 4 - Explain, in terms of the properties of the four...Ch. 4 - What is the dominant force between astronomical...Ch. 4 - Give a detailed example of the exchange of a...Ch. 4 - A 63.0-kg sprinter starts a race with an...Ch. 4 - If the sprinter from the previous problem...Ch. 4 - A cleaner pushes a 4.50-kg laundry cart in such a...Ch. 4 - Since astronauts in orbit are apparently...Ch. 4 - In Figure 4.7, the net external force on the 24-kg...Ch. 4 - The same rocket sled drawn in Figure 4.31 is...Ch. 4 - (a) If the rocket sled shown in Figure 4.32 starts...Ch. 4 - What is the deceleration of the rocket sled if it...Ch. 4 - Suppose two children push horizontally, but in...Ch. 4 - A powerful motorcycle can produce an acceleration...Ch. 4 - The rocket sled shown in Figure 4.33 accelerates...Ch. 4 - Repeat the previous problem for the situation in...Ch. 4 - The weight of an astronaut plus his space suit on...Ch. 4 - Suppose the mass of a fully loaded module in which...Ch. 4 - What net external force is exerted on a 1100-kg...Ch. 4 - A brave but inadequate rugby player is being...Ch. 4 - Two teams of nine members each engage in a tug of...Ch. 4 - What force does a trampoline have to apply to a...Ch. 4 - (a) Calculate the tension in a vertical strand of...Ch. 4 - Suppose a 60.0-kg gymnast climbs a rope. (a) What...Ch. 4 - Show that, as stated in the text, a force F...Ch. 4 - Consider the baby being weighed in Figure 4.34....Ch. 4 - A 5.00105 -kg rocket is accelerating straight up....Ch. 4 - The wheels of a midsize car exert a force of 2100...Ch. 4 - Calculate the force a 70.0-kg high jumper must...Ch. 4 - When landing after a spectacular somersault, a...Ch. 4 - A freight train consists of two 8.00104 -kg...Ch. 4 - Commercial airplanes are sometimes pushed out of...Ch. 4 - A 1100-kg car pulls a boat on a trailer. (a) What...Ch. 4 - (a) Find the magnitudes of the forces F1 and F2...Ch. 4 - Two children pull a third child on a snow saucer...Ch. 4 - Suppose your car was mired deeply in the mud and...Ch. 4 - What force is exerted on the tooth in Figure 4.38...Ch. 4 - Figure 4.39 shows Superhero and Trusty Sidekick...Ch. 4 - A nurse pushes a cart by exerting a force on the...Ch. 4 - Construct Your Own Problem Consider the tension in...Ch. 4 - Construct Your Own Problem Consider people pushing...Ch. 4 - Unreasonable Results (a) Repeat Exercise 4.29, but...Ch. 4 -
Ch. 4 - A flea jumps by exerting a force of 1.20105 N...Ch. 4 - Two muscles in the back of the leg pull upward on...Ch. 4 - A 76.0-kg person is being pulled away from a...Ch. 4 - Integrated Concepts A 35.0-kg dolphin decelerates...Ch. 4 - Integrated Concepts When starting a foot race, a...Ch. 4 - Integrated Concepts A large rocket has a mass of...Ch. 4 - Integrated Concepts A basketball player jumps...Ch. 4 - Integrated Concepts A 2.50-kg fireworks shell is...Ch. 4 - Integrated Concepts Repeat Exercise 4.47 for a...Ch. 4 - Integrated Concepts An elevator filled with...Ch. 4 - Unreasonable Results (a) What is the final...Ch. 4 - Unreasonable Results A 75.0-kg man stands on a...Ch. 4 - (a) What is the strength of the weak nuclear force...Ch. 4 - (a) What is the ratio of the strength of the...Ch. 4 - What is the ratio of the strength of the strong...Ch. 4 - Prob. 1TPCh. 4 - Prob. 2TPCh. 4 - Prob. 3TPCh. 4 - Prob. 4TPCh. 4 - Prob. 5TPCh. 4 - Prob. 6TPCh. 4 - Prob. 7TPCh. 4 - Prob. 8TPCh. 4 - Prob. 9TPCh. 4 - Prob. 10TPCh. 4 - Prob. 11TPCh. 4 - Prob. 12TPCh. 4 - Prob. 13TPCh. 4 - Prob. 14TPCh. 4 - Prob. 15TPCh. 4 - Prob. 16TPCh. 4 - Prob. 17TPCh. 4 - Prob. 18TPCh. 4 - Prob. 19TPCh. 4 - Prob. 20TPCh. 4 - Prob. 21TPCh. 4 - Prob. 22TPCh. 4 - Prob. 23TPCh. 4 - Prob. 24TPCh. 4 - Prob. 25TPCh. 4 - Prob. 26TPCh. 4 - Prob. 27TPCh. 4 - Prob. 28TPCh. 4 - Prob. 29TPCh. 4 - Prob. 30TPCh. 4 - Prob. 31TPCh. 4 - Prob. 32TPCh. 4 - Prob. 33TPCh. 4 - Prob. 34TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
MAKE CONNECTIONS The gene that causes sickle-cell disease is present in a higher percentage of residents of su...
Campbell Biology (11th Edition)
The accompanying chromosome diagram represents a eukaryotic chromosome prepared with Giemsa stain. Indicate the...
Genetic Analysis: An Integrated Approach (3rd Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
CAUTION Why does the presence of extinct forms and transitional features in the fossil record support the patte...
Biological Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forwardIf a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardPlease help me on questions A - F (a) An elevator of mass m moving upward has two forces acting on it: the upward force of tension in the cable and the downward force due to gravity. When the elevator is accelerating upward, which is greater, T or w? 1. T 2. w 3. Both forces are equal. (b) When the elevator is moving at a constant velocity upward, which is greater, T or w? 1. T 2. w 3.Both forces are equal. (c) When the elevator is moving upward, but the acceleration is downward, which is greater, T or w? 1. T 2. w 3.Both forces are equal. (d) Let the elevator have a mass of 1,225 kg and an upward acceleration of 2.3 m/s2. Find T. _____________________ NIs your answer consistent with the answer to part (a)? Yes / No (e) The elevator of part (d) now moves with constant upward velocity of 10 m/s. Find T. _____________________ NIs your answer consistent with your answer to part (b)? Yes / No (f) Having initially moved…arrow_forward
- A 140 kg wooden crate resting on a wood floor. The coefficients of stattic and kinetic friction here are μs =0.5 and μk=0.3. WHat maximum force, in newtons, can you exert horizontally on the crate without moving it? If you continue to extert this force once the crate starts to slip, what will its accelertation be in m/s2?arrow_forwardAn elevator cab that weighs 25.8 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of 1.06 m/s2 and (b) decreasing at a rate of 1.06 m/s2?arrow_forwardAn elevator cab that weighs 21.6 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of 1.05 m/s2 and (b) decreasing at a rate of 1.05 m/s2?arrow_forward
- An elevator in a tall building is allowed to reach a maximum speed of 3.5m/s going down. What must the tension be in the cable to stop this elevator over a distance of 2.6 m if the elevator has a mass of 1450 kg including occupants?arrow_forwardYou are pulling a 32 kg dresser up a ramp (inclined at an angle of 22 degrees) with an acceleration of 3.4 m/s^2. If the coefficient of friction between the dresser and the ramp is 0.44, what is the tension in the rope, assuming it is being pulled horizontal to the ramp?arrow_forwardA 2000kg elevator has a downward acceleration of 1.0 m/s/s. (a) What is the tension in its supporting cable? (b) The same elevator later has an upward acceleration of 1.5 m/s/s. What is the tension in the cable now?arrow_forward
- You are designing a high-speed elevator for a new skyscraper. The elevator will have a mass limit of 2400 kg (including passengers). For passenger comfort, you choose the maximum ascent speed to be 18.0 m/s, the maximum descent speed to be 10.0 m/s, and the maximum acceleration magnitude to be 5.00 m/s2. Ignore friction. What is the maximum upward force that the supporting cables exert on the elevator car?arrow_forwardA box rests on a horizontal surface. You apply a force on the box of F = 100 N at an angle, θ, below the horizontal and it slides at a constant velocity. The friction force that acts on the box is?arrow_forwardAn elevator filled with passengers has a mass of 1700 kg. (a) The elevator accelerates upward from rest at a rate of 1.20 m/s2 for 1.50 s. Calculate the tension in the cable supporting the elevator. (b) The elevator continues upward at constant velocity for 8.50 s. What is the tension in the cable during this time? (c) The elevator decelerates at a rate of 0.600m/s2 for 3.00 s. What is the tension in the cable during deceleration? (d) How high has the elevator moved above its original starting point, and what is its final velocity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY