College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 18PE
What force does a trampoline have to apply to a 45.0-kg gymnast to accelerate her straight up at 7.50 m/s2? Note that the answer is independent of the velocity of the gymnast—she can be moving either up or down, or be stationary.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A box with mass m sits at the bottom of a long ramp thatis sloped upward at an angle a above the horizontal. You give the boxa quick shove, and after it leaves your hands it is moving up the rampwith an initial speed v0. The box travels a distance d up the ramp andthen slides back down. When it returns to its starting point, the speedof the box is half the speed it started with; it has speed v0 /2. What isthe coefficient of kinetic friction between the box and the ramp? (Youranswer should depend on only a.)
Determine the force Q-> when the block moves with constant velocity. Express your answer in vector form.
A 78 kg bungee jumper is initially standing at rest on a bridge. After falling a distance 15 m, then how fast is the person moving? Assume that the force of the bungee cord acting on the person can be modeled as F = 354.6s + -5.2s3, where s is how far the person has fallen.
Chapter 4 Solutions
College Physics
Ch. 4 - Propose a force standard different from the...Ch. 4 - What properties do forces have that allow us to...Ch. 4 - How are inertia and mass related?Ch. 4 - What is the relationship between weight and mass?...Ch. 4 - Which statement is correct? (a) Net force causes...Ch. 4 - Why can we neglect forces such as those holding a...Ch. 4 - Explain how the choice of the “Stem of interest”...Ch. 4 - Describe a situation in which the net external...Ch. 4 - A system can have a nonzero velocity while the net...Ch. 4 - A rock is thrown straight up. What is the net...
Ch. 4 - (a) Give an example of different net external...Ch. 4 - If the acceleration of a system is zero, are no...Ch. 4 - If a constant, nonzero force is applied to an...Ch. 4 - The gravitational force on the basketball in...Ch. 4 - When you take off in a jet aircraft, there is a...Ch. 4 - A device used since the 1940s to measure the kick...Ch. 4 - Describe a Situation in which one a force on and,...Ch. 4 - Why does an ordinary rifle recoil (kick backward)...Ch. 4 - An American football lineman reasons that it is...Ch. 4 - Newton's third law of motion tells us that forces...Ch. 4 - If a leg is suspended by a traction setup as shown...Ch. 4 - Ina traction setup a broken bone, with pulleys and...Ch. 4 - To simulate the apparent weightlessness of space...Ch. 4 - A cartoon shows the toupee coming off the head of...Ch. 4 - Explain, in terms of the properties of the four...Ch. 4 - What is the dominant force between astronomical...Ch. 4 - Give a detailed example of the exchange of a...Ch. 4 - A 63.0-kg sprinter starts a race with an...Ch. 4 - If the sprinter from the previous problem...Ch. 4 - A cleaner pushes a 4.50-kg laundry cart in such a...Ch. 4 - Since astronauts in orbit are apparently...Ch. 4 - In Figure 4.7, the net external force on the 24-kg...Ch. 4 - The same rocket sled drawn in Figure 4.31 is...Ch. 4 - (a) If the rocket sled shown in Figure 4.32 starts...Ch. 4 - What is the deceleration of the rocket sled if it...Ch. 4 - Suppose two children push horizontally, but in...Ch. 4 - A powerful motorcycle can produce an acceleration...Ch. 4 - The rocket sled shown in Figure 4.33 accelerates...Ch. 4 - Repeat the previous problem for the situation in...Ch. 4 - The weight of an astronaut plus his space suit on...Ch. 4 - Suppose the mass of a fully loaded module in which...Ch. 4 - What net external force is exerted on a 1100-kg...Ch. 4 - A brave but inadequate rugby player is being...Ch. 4 - Two teams of nine members each engage in a tug of...Ch. 4 - What force does a trampoline have to apply to a...Ch. 4 - (a) Calculate the tension in a vertical strand of...Ch. 4 - Suppose a 60.0-kg gymnast climbs a rope. (a) What...Ch. 4 - Show that, as stated in the text, a force F...Ch. 4 - Consider the baby being weighed in Figure 4.34....Ch. 4 - A 5.00105 -kg rocket is accelerating straight up....Ch. 4 - The wheels of a midsize car exert a force of 2100...Ch. 4 - Calculate the force a 70.0-kg high jumper must...Ch. 4 - When landing after a spectacular somersault, a...Ch. 4 - A freight train consists of two 8.00104 -kg...Ch. 4 - Commercial airplanes are sometimes pushed out of...Ch. 4 - A 1100-kg car pulls a boat on a trailer. (a) What...Ch. 4 - (a) Find the magnitudes of the forces F1 and F2...Ch. 4 - Two children pull a third child on a snow saucer...Ch. 4 - Suppose your car was mired deeply in the mud and...Ch. 4 - What force is exerted on the tooth in Figure 4.38...Ch. 4 - Figure 4.39 shows Superhero and Trusty Sidekick...Ch. 4 - A nurse pushes a cart by exerting a force on the...Ch. 4 - Construct Your Own Problem Consider the tension in...Ch. 4 - Construct Your Own Problem Consider people pushing...Ch. 4 - Unreasonable Results (a) Repeat Exercise 4.29, but...Ch. 4 -
Ch. 4 - A flea jumps by exerting a force of 1.20105 N...Ch. 4 - Two muscles in the back of the leg pull upward on...Ch. 4 - A 76.0-kg person is being pulled away from a...Ch. 4 - Integrated Concepts A 35.0-kg dolphin decelerates...Ch. 4 - Integrated Concepts When starting a foot race, a...Ch. 4 - Integrated Concepts A large rocket has a mass of...Ch. 4 - Integrated Concepts A basketball player jumps...Ch. 4 - Integrated Concepts A 2.50-kg fireworks shell is...Ch. 4 - Integrated Concepts Repeat Exercise 4.47 for a...Ch. 4 - Integrated Concepts An elevator filled with...Ch. 4 - Unreasonable Results (a) What is the final...Ch. 4 - Unreasonable Results A 75.0-kg man stands on a...Ch. 4 - (a) What is the strength of the weak nuclear force...Ch. 4 - (a) What is the ratio of the strength of the...Ch. 4 - What is the ratio of the strength of the strong...Ch. 4 - Prob. 1TPCh. 4 - Prob. 2TPCh. 4 - Prob. 3TPCh. 4 - Prob. 4TPCh. 4 - Prob. 5TPCh. 4 - Prob. 6TPCh. 4 - Prob. 7TPCh. 4 - Prob. 8TPCh. 4 - Prob. 9TPCh. 4 - Prob. 10TPCh. 4 - Prob. 11TPCh. 4 - Prob. 12TPCh. 4 - Prob. 13TPCh. 4 - Prob. 14TPCh. 4 - Prob. 15TPCh. 4 - Prob. 16TPCh. 4 - Prob. 17TPCh. 4 - Prob. 18TPCh. 4 - Prob. 19TPCh. 4 - Prob. 20TPCh. 4 - Prob. 21TPCh. 4 - Prob. 22TPCh. 4 - Prob. 23TPCh. 4 - Prob. 24TPCh. 4 - Prob. 25TPCh. 4 - Prob. 26TPCh. 4 - Prob. 27TPCh. 4 - Prob. 28TPCh. 4 - Prob. 29TPCh. 4 - Prob. 30TPCh. 4 - Prob. 31TPCh. 4 - Prob. 32TPCh. 4 - Prob. 33TPCh. 4 - Prob. 34TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. Studies of DNA support which of the following?
a. Members of the group called australopiths were the first t...
Campbell Biology: Concepts & Connections (9th Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
In the datura plant, purple flower color is controlled by a dominant allele P. White flowers are found in plant...
Genetic Analysis: An Integrated Approach (3rd Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
1. How many cervical, thoracic, lumbar, sacral, and coccygeal vertebrae are normally present in the vertebral ...
Human Anatomy & Physiology (2nd Edition)
Use a globe or map to determine, as accurately as possible, the latitude and longitude of Athens, Greece.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A basketball player of mass m=88.4 kg jumps straight up for a ball. To do this, he lowers his body d1=0.44 m, then he accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a speed sufficient to carry him d2=0.56 m above the floor. Write an expression for the speed v with which the basketball player leaves the floor. Write an expression for the speed v with wiich the basketball player leaves the floor. Write an expression for the acceleration, a, of the basketball player during the leg-straightening. Write an expression for the force upward force, FN, exerted on the basketball player by the floor during the leg straightening. What is the magnitude, in newtons, of the force FN while the player is straightening his legs?arrow_forwardAn 85 kg man lowers himself to the ground from a height of 10.0 m by holding onto a rope that runs over a frictionless pulley to a 65 kg sandbag. With what speed does the man hit the ground if he started from rest?arrow_forwardThe parachute on a race car of weight 8 820 N opens at the end of a quarter-mile run when the car is traveling at 35 m/s. What total retarding force must be supplied by the parachute to stop the car in a distance of 1 000 m?arrow_forward
- The parameters of instantaneous speed, altitude, net engine thrust, and wind speed are given for the aircraft, which accelerates and moves at a fixed altitude of 5000 kg, while leaving a load of 150 kg. In case the air friction is neglected, calculate the distance between the load and the aircraft while falling to the ground.arrow_forwardSunjamming. A “sun yacht” is a spacecraft with a large sail that is pushed by sunlight. Although such a push is tiny in everyday circumstances, it can be large enough to send the spacecraft outward from the Sun on a cost-free but slow trip. Suppose that the spacecraft has a mass of 900 kg and receives a push of 20 N. (a) What is the magnitude of the resulting acceleration? If the craft starts from rest, (b) how far will it travel in 1 day and (c) how fast will it then be moving?arrow_forwardIn the figure, block A has a mass of 4.00 kg. It rests on a smooth horizontal table and is connected by a very light horizontal string over an ideal pulley to block B, which has a mass of 3.5 kg. When block B is gently released from rest, how long does it take block B to travel 90 cm? B. O 0.404 s 0.785 s 0.494 s O 0.62 s O 0.935 s A.arrow_forward
- An aging coyote (m = 42.1 kg) cannot run fast enough to catch a roadrunner (m = 16.3 kg). He purchases a set of jet-powered roller skates, which proved a constant horizontal acceleration of 15.2 m/s2. The coyote starts at rest 73.2 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff. Hint: their initial positions at the top of the cliff are the same. a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. b. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while he is in the air is (15.2i – 9.80j) m/s2. The cliff is 127 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands. c. Determine the components of the coyote’s impulse upon impact.arrow_forwardIf motor M exerts a force of F = (10t2 + 100) N on the cable, where t is in seconds, determine the velocity of the 25-kg crate when t = 4 s. The coefficients of static and kinetic friction between the crate and the plane are μ s = 0.3 and μ k = 0.25, respectively. The crate is initially at restarrow_forwardYou are standing at the top of a cliff that has a stairstep configuration. There is a vertical drop of 6 m at your feet, then a horizontal shelf of 5 m , then another drop of 4 m to the bottom of the canyon, which has a horizontal floor. You kick a 0.44 kg rock, giving it an initial horizontal velocity that barely clears the shelf below What initial horizontal velocity v will be required to barely clear the edge of the shelf below you? The acceleration of gravity is 9.8 m/s^2 . Consider air friction to be negligible. Answer in units of m/s. How far from the bottom of the second cliff will the projectile land? Answer in units of m.arrow_forward
- A 1370-kg car is skidding to a stop along a horizontal surface. The car decelerates from 27.6 m/s to a rest position in 3.15 seconds. Assuming negligible air resistance, determine the coefficient of friction between the car tires and the road surface.arrow_forwardA car has a mass of 1750 kg. If the driver applies the brakes while on a gravel road, the maximum friction force that the tires can provide without skidding is about 6500 N. If the car is moving at 22 m/s, what is the shortest distance in which the car can stop safely?arrow_forwardSolve 7darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License