College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 25PE
Calculate the force a 70.0-kg high jumper must exert on the ground to produce an upward acceleration 4.00 times the acceleration due to gravity. Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A contestant in a winter sports contest pulls a 47 kg brick of ice 25 degrees in the positive horizontal direction with a rope over his shoulders over a frozen lake. Assume the coefficients of static and kinetic friction are µs=0.1 and µk=0.03.
1. Calculate the minimum force F he must exert to get the brick sliding in newtons.
2. What is its acceleration in m/s2 once it starts to move, if that force is maintained?
Superman is applying a 17,000 N horizontal force to try and stop a speeding locomotive. This train has a mass of {9004} kg, it is on level, horizontal track, and gravity in Metropolis is 10 N/kg. The train is originally travelling at 25 m/s, and the brakes have failed. (Friction force is zero).
Draw a Force Body Diagram of the train, labelling and calculating all forces.
What is the acceleration of the train?
How many seconds does it take for Superman to stop the train?
How far does the train travel in that time?
A ball with mass 0.55 kg is thrown upward with initial velocity 5 m/s
from the roof of a building 20 m high. Assume there is a force due to
air resistance of magnitude
directed opposite to the velocity, where
30
the velocity v is measured in m/s.
NOTE: Use g=9.8 m/s² as the acceleration due to gravity.
Round your answers to 2 decimal places.
a) Find the maximum height above the ground that the ball reaches.
Height:
m
b) Find the time that the ball hits the ground.
Time:
seconds
Chapter 4 Solutions
College Physics
Ch. 4 - Propose a force standard different from the...Ch. 4 - What properties do forces have that allow us to...Ch. 4 - How are inertia and mass related?Ch. 4 - What is the relationship between weight and mass?...Ch. 4 - Which statement is correct? (a) Net force causes...Ch. 4 - Why can we neglect forces such as those holding a...Ch. 4 - Explain how the choice of the “Stem of interest”...Ch. 4 - Describe a situation in which the net external...Ch. 4 - A system can have a nonzero velocity while the net...Ch. 4 - A rock is thrown straight up. What is the net...
Ch. 4 - (a) Give an example of different net external...Ch. 4 - If the acceleration of a system is zero, are no...Ch. 4 - If a constant, nonzero force is applied to an...Ch. 4 - The gravitational force on the basketball in...Ch. 4 - When you take off in a jet aircraft, there is a...Ch. 4 - A device used since the 1940s to measure the kick...Ch. 4 - Describe a Situation in which one a force on and,...Ch. 4 - Why does an ordinary rifle recoil (kick backward)...Ch. 4 - An American football lineman reasons that it is...Ch. 4 - Newton's third law of motion tells us that forces...Ch. 4 - If a leg is suspended by a traction setup as shown...Ch. 4 - Ina traction setup a broken bone, with pulleys and...Ch. 4 - To simulate the apparent weightlessness of space...Ch. 4 - A cartoon shows the toupee coming off the head of...Ch. 4 - Explain, in terms of the properties of the four...Ch. 4 - What is the dominant force between astronomical...Ch. 4 - Give a detailed example of the exchange of a...Ch. 4 - A 63.0-kg sprinter starts a race with an...Ch. 4 - If the sprinter from the previous problem...Ch. 4 - A cleaner pushes a 4.50-kg laundry cart in such a...Ch. 4 - Since astronauts in orbit are apparently...Ch. 4 - In Figure 4.7, the net external force on the 24-kg...Ch. 4 - The same rocket sled drawn in Figure 4.31 is...Ch. 4 - (a) If the rocket sled shown in Figure 4.32 starts...Ch. 4 - What is the deceleration of the rocket sled if it...Ch. 4 - Suppose two children push horizontally, but in...Ch. 4 - A powerful motorcycle can produce an acceleration...Ch. 4 - The rocket sled shown in Figure 4.33 accelerates...Ch. 4 - Repeat the previous problem for the situation in...Ch. 4 - The weight of an astronaut plus his space suit on...Ch. 4 - Suppose the mass of a fully loaded module in which...Ch. 4 - What net external force is exerted on a 1100-kg...Ch. 4 - A brave but inadequate rugby player is being...Ch. 4 - Two teams of nine members each engage in a tug of...Ch. 4 - What force does a trampoline have to apply to a...Ch. 4 - (a) Calculate the tension in a vertical strand of...Ch. 4 - Suppose a 60.0-kg gymnast climbs a rope. (a) What...Ch. 4 - Show that, as stated in the text, a force F...Ch. 4 - Consider the baby being weighed in Figure 4.34....Ch. 4 - A 5.00105 -kg rocket is accelerating straight up....Ch. 4 - The wheels of a midsize car exert a force of 2100...Ch. 4 - Calculate the force a 70.0-kg high jumper must...Ch. 4 - When landing after a spectacular somersault, a...Ch. 4 - A freight train consists of two 8.00104 -kg...Ch. 4 - Commercial airplanes are sometimes pushed out of...Ch. 4 - A 1100-kg car pulls a boat on a trailer. (a) What...Ch. 4 - (a) Find the magnitudes of the forces F1 and F2...Ch. 4 - Two children pull a third child on a snow saucer...Ch. 4 - Suppose your car was mired deeply in the mud and...Ch. 4 - What force is exerted on the tooth in Figure 4.38...Ch. 4 - Figure 4.39 shows Superhero and Trusty Sidekick...Ch. 4 - A nurse pushes a cart by exerting a force on the...Ch. 4 - Construct Your Own Problem Consider the tension in...Ch. 4 - Construct Your Own Problem Consider people pushing...Ch. 4 - Unreasonable Results (a) Repeat Exercise 4.29, but...Ch. 4 -
Ch. 4 - A flea jumps by exerting a force of 1.20105 N...Ch. 4 - Two muscles in the back of the leg pull upward on...Ch. 4 - A 76.0-kg person is being pulled away from a...Ch. 4 - Integrated Concepts A 35.0-kg dolphin decelerates...Ch. 4 - Integrated Concepts When starting a foot race, a...Ch. 4 - Integrated Concepts A large rocket has a mass of...Ch. 4 - Integrated Concepts A basketball player jumps...Ch. 4 - Integrated Concepts A 2.50-kg fireworks shell is...Ch. 4 - Integrated Concepts Repeat Exercise 4.47 for a...Ch. 4 - Integrated Concepts An elevator filled with...Ch. 4 - Unreasonable Results (a) What is the final...Ch. 4 - Unreasonable Results A 75.0-kg man stands on a...Ch. 4 - (a) What is the strength of the weak nuclear force...Ch. 4 - (a) What is the ratio of the strength of the...Ch. 4 - What is the ratio of the strength of the strong...Ch. 4 - Prob. 1TPCh. 4 - Prob. 2TPCh. 4 - Prob. 3TPCh. 4 - Prob. 4TPCh. 4 - Prob. 5TPCh. 4 - Prob. 6TPCh. 4 - Prob. 7TPCh. 4 - Prob. 8TPCh. 4 - Prob. 9TPCh. 4 - Prob. 10TPCh. 4 - Prob. 11TPCh. 4 - Prob. 12TPCh. 4 - Prob. 13TPCh. 4 - Prob. 14TPCh. 4 - Prob. 15TPCh. 4 - Prob. 16TPCh. 4 - Prob. 17TPCh. 4 - Prob. 18TPCh. 4 - Prob. 19TPCh. 4 - Prob. 20TPCh. 4 - Prob. 21TPCh. 4 - Prob. 22TPCh. 4 - Prob. 23TPCh. 4 - Prob. 24TPCh. 4 - Prob. 25TPCh. 4 - Prob. 26TPCh. 4 - Prob. 27TPCh. 4 - Prob. 28TPCh. 4 - Prob. 29TPCh. 4 - Prob. 30TPCh. 4 - Prob. 31TPCh. 4 - Prob. 32TPCh. 4 - Prob. 33TPCh. 4 - Prob. 34TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
In mice, black coat color is dominant to white coat color. In the pedigree shown here, mice with a black coat a...
Genetic Analysis: An Integrated Approach (3rd Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
Draw the following orbitals: a. 3s orbital b. 4s orbital c. 3p orbital
Organic Chemistry (8th Edition)
Use a globe or map to determine, as accurately as possible, the latitude and longitude of Athens, Greece.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- We watch as a 4.0 kg block slides along a level table which has a kinetic friction of 0.37. Draw a force diagram for the block during the slide, determine the normal force, and use it to find the deceleration of the block while sliding.arrow_forwardA dockworker loading crates on a ship finds that a 20 kg crate, initially at rest on a horizontal surface, requires a 79 N horizontal force to set it in motion. However, after the crate is in motion, a horizontal force of 50 N is required to keep it moving with a constant speed. Find the coefficients of static and kinetic friction between crate and floor.arrow_forwardA child pulls on a wagon handle at an angle of 23.8 degrees above the horizontal with a force of 68 N. If the wagon accelerates at 2.61 m/s² horizontally, what is the mass (in kg) of the wagon? Assume friction is negligible. Your Answer: units Answerarrow_forward
- Suppose two children push horizontally, but in exactly opposite directions, on a third child in a sled. The first child exerts a force of 71 N, the second a force of 91 N, kinetic friction is 5.5 N, and the mass of the third child plus sled is 24.5 kg. Using a coordinate system where the second child is pushing in the positive direction, calculate the acceleration in m/s2.arrow_forwardA 1250kg small aircraft accelerates along the runway to slow down from +36.6 m/s to +6.60 m/s in 5.10 seconds. Determine the average resistive (friction) force acting upon the plane. (don't forget the correct sign for the direction) (Use correct number of significant figures in answer) Force of friction =arrow_forwardA stone of mass m is dropped from a sheer cliff of height h. The wind exerts a force F on the stone. Assume the wind is parallel to the face of the cliff and the ground and F is constant. (Use any variable or symbol stated above along with the following as necessary: g. For all vectors, enter the magnitude.)arrow_forward
- A ball with mass 0.85 kg is thrown upward with initial velocity 30 m/s from the roof of a building 40 m high. Assume there is a force due to v² directed opposite to the velocity, air resistance of magnitude 1325 where the velocity v is measured in m/s. NOTE: Use g=9.8 m/s² as the acceleration due to gravity. Round your answers to 2 decimal places. a) Find the maximum height above the ground that the ball reaches. Height: m b) Find the time that the ball hits the ground. Time: seconds c) Use a graphing utility to plot the graphs of velocity and position versus time.arrow_forwardNeed helparrow_forwardA powerful motorcycle can produce an acceleration of 3.50 m/s while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What is the magnitude of the force the motorcycle exerts backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg?arrow_forward
- You have gone skiing at the Poconos. You (mass 45 Kg) are being pulled up a 300 snow-covered slope by a tow rope at constant speed 0.5 m/s. Ignore friction. Calculate the normal force on you and the tension in the rope. (Hint: Draw a force diagram, i.e., all the forces acting on you.) a) Normal force = 382 N, Tension = 220.5 N b) Normal force = 220.5 N, Tension = 382 Narrow_forwardNewton's Second Law in 1 Dimension: A 10-kg object is hanging by a very light wire in an elevator that is traveling upward. The tension in the rope is measured to be 75 N. a)What is the magnitude of the acceleration of the elevator? B)What is the direction of the acceleration of the elevator?arrow_forwardAn 85.0 kg subject is strapped into a 1950's rocket sled. Upon firing the rocket sled's acceleration is a constant 5.00 m/s2. Find the force the subject experiences during this acceleration and the rocket sled (from above) is braked to a complete stop from v = 5.0 m/s in 3.0 s. What is the force on the subject? Express this force in "g's"arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY