College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 30TP
To determine
The fundamental force which is responsible for a ball bouncing off the ground after it hits, and the reason for the effect of this force.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A person holds a stick weighing 0.94 kg in his left hand, 9.0 cm from the left end of the stick, and 22 cm from the left end of the stick in his right hand. The bat's center of mass is 50 cm from the left end of the bat. A plummeting ball bounces 80 cm from the left end of the bat. The ball exerts an average force of 29 N on the bat during the bounce.When the ball hits the bat, the person's hand holds the bat and does not move or rotate. Find the average force exerted by the left hand as the ball bounces off the bat.
A 2x103 g metal sphere makes an elastic collision with another metal sphere at rest and continues to move in its original direction but with 1/4 its original speed. What is the speed of the two-sphere center of mass if the initial speed of the first sphere is 4m/s?
(Answer in one decimal place, no unit)
UNIT: m/s
A system has a 1.5 kg particle at the origin. The other particle has a mass of 2.5 kg and is located 3 m away on the x axis. Where is the center of mass for this system?
Chapter 4 Solutions
College Physics
Ch. 4 - Propose a force standard different from the...Ch. 4 - What properties do forces have that allow us to...Ch. 4 - How are inertia and mass related?Ch. 4 - What is the relationship between weight and mass?...Ch. 4 - Which statement is correct? (a) Net force causes...Ch. 4 - Why can we neglect forces such as those holding a...Ch. 4 - Explain how the choice of the “Stem of interest”...Ch. 4 - Describe a situation in which the net external...Ch. 4 - A system can have a nonzero velocity while the net...Ch. 4 - A rock is thrown straight up. What is the net...
Ch. 4 - (a) Give an example of different net external...Ch. 4 - If the acceleration of a system is zero, are no...Ch. 4 - If a constant, nonzero force is applied to an...Ch. 4 - The gravitational force on the basketball in...Ch. 4 - When you take off in a jet aircraft, there is a...Ch. 4 - A device used since the 1940s to measure the kick...Ch. 4 - Describe a Situation in which one a force on and,...Ch. 4 - Why does an ordinary rifle recoil (kick backward)...Ch. 4 - An American football lineman reasons that it is...Ch. 4 - Newton's third law of motion tells us that forces...Ch. 4 - If a leg is suspended by a traction setup as shown...Ch. 4 - Ina traction setup a broken bone, with pulleys and...Ch. 4 - To simulate the apparent weightlessness of space...Ch. 4 - A cartoon shows the toupee coming off the head of...Ch. 4 - Explain, in terms of the properties of the four...Ch. 4 - What is the dominant force between astronomical...Ch. 4 - Give a detailed example of the exchange of a...Ch. 4 - A 63.0-kg sprinter starts a race with an...Ch. 4 - If the sprinter from the previous problem...Ch. 4 - A cleaner pushes a 4.50-kg laundry cart in such a...Ch. 4 - Since astronauts in orbit are apparently...Ch. 4 - In Figure 4.7, the net external force on the 24-kg...Ch. 4 - The same rocket sled drawn in Figure 4.31 is...Ch. 4 - (a) If the rocket sled shown in Figure 4.32 starts...Ch. 4 - What is the deceleration of the rocket sled if it...Ch. 4 - Suppose two children push horizontally, but in...Ch. 4 - A powerful motorcycle can produce an acceleration...Ch. 4 - The rocket sled shown in Figure 4.33 accelerates...Ch. 4 - Repeat the previous problem for the situation in...Ch. 4 - The weight of an astronaut plus his space suit on...Ch. 4 - Suppose the mass of a fully loaded module in which...Ch. 4 - What net external force is exerted on a 1100-kg...Ch. 4 - A brave but inadequate rugby player is being...Ch. 4 - Two teams of nine members each engage in a tug of...Ch. 4 - What force does a trampoline have to apply to a...Ch. 4 - (a) Calculate the tension in a vertical strand of...Ch. 4 - Suppose a 60.0-kg gymnast climbs a rope. (a) What...Ch. 4 - Show that, as stated in the text, a force F...Ch. 4 - Consider the baby being weighed in Figure 4.34....Ch. 4 - A 5.00105 -kg rocket is accelerating straight up....Ch. 4 - The wheels of a midsize car exert a force of 2100...Ch. 4 - Calculate the force a 70.0-kg high jumper must...Ch. 4 - When landing after a spectacular somersault, a...Ch. 4 - A freight train consists of two 8.00104 -kg...Ch. 4 - Commercial airplanes are sometimes pushed out of...Ch. 4 - A 1100-kg car pulls a boat on a trailer. (a) What...Ch. 4 - (a) Find the magnitudes of the forces F1 and F2...Ch. 4 - Two children pull a third child on a snow saucer...Ch. 4 - Suppose your car was mired deeply in the mud and...Ch. 4 - What force is exerted on the tooth in Figure 4.38...Ch. 4 - Figure 4.39 shows Superhero and Trusty Sidekick...Ch. 4 - A nurse pushes a cart by exerting a force on the...Ch. 4 - Construct Your Own Problem Consider the tension in...Ch. 4 - Construct Your Own Problem Consider people pushing...Ch. 4 - Unreasonable Results (a) Repeat Exercise 4.29, but...Ch. 4 -
Ch. 4 - A flea jumps by exerting a force of 1.20105 N...Ch. 4 - Two muscles in the back of the leg pull upward on...Ch. 4 - A 76.0-kg person is being pulled away from a...Ch. 4 - Integrated Concepts A 35.0-kg dolphin decelerates...Ch. 4 - Integrated Concepts When starting a foot race, a...Ch. 4 - Integrated Concepts A large rocket has a mass of...Ch. 4 - Integrated Concepts A basketball player jumps...Ch. 4 - Integrated Concepts A 2.50-kg fireworks shell is...Ch. 4 - Integrated Concepts Repeat Exercise 4.47 for a...Ch. 4 - Integrated Concepts An elevator filled with...Ch. 4 - Unreasonable Results (a) What is the final...Ch. 4 - Unreasonable Results A 75.0-kg man stands on a...Ch. 4 - (a) What is the strength of the weak nuclear force...Ch. 4 - (a) What is the ratio of the strength of the...Ch. 4 - What is the ratio of the strength of the strong...Ch. 4 - Prob. 1TPCh. 4 - Prob. 2TPCh. 4 - Prob. 3TPCh. 4 - Prob. 4TPCh. 4 - Prob. 5TPCh. 4 - Prob. 6TPCh. 4 - Prob. 7TPCh. 4 - Prob. 8TPCh. 4 - Prob. 9TPCh. 4 - Prob. 10TPCh. 4 - Prob. 11TPCh. 4 - Prob. 12TPCh. 4 - Prob. 13TPCh. 4 - Prob. 14TPCh. 4 - Prob. 15TPCh. 4 - Prob. 16TPCh. 4 - Prob. 17TPCh. 4 - Prob. 18TPCh. 4 - Prob. 19TPCh. 4 - Prob. 20TPCh. 4 - Prob. 21TPCh. 4 - Prob. 22TPCh. 4 - Prob. 23TPCh. 4 - Prob. 24TPCh. 4 - Prob. 25TPCh. 4 - Prob. 26TPCh. 4 - Prob. 27TPCh. 4 - Prob. 28TPCh. 4 - Prob. 29TPCh. 4 - Prob. 30TPCh. 4 - Prob. 31TPCh. 4 - Prob. 32TPCh. 4 - Prob. 33TPCh. 4 - Prob. 34TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two projectiles of mass m1 and m2 , are fired at the same speed but in opposite directions from two launch sites separated by a distance D. They both reach the same spot in their highest point and strike there. As a result of the impact they stick together and move as a single body afterwards. Find the place they will land.arrow_forwardA table-tennis ball is thrown at a stationary bowling ball. The table-tennis ball makes a one-dimensional elastic collision and bounces back along the same line. Compared with the bowling ball after the collision, does the table-tennis ball have (a) a larger magnitude of momentum and more kinetic energy, (b) a smaller magnitude of momentum and more kinetic energy, (c) a larger magnitude of momentum and less kinetic energy, (d) a smaller magnitude of momentum and less kinetic energy, or (e) the same magnitude of momentum and the same kinetic energyarrow_forwardTwo bumper cars at the county fair are sliding toward one another (Fig. P11.54). Initially, bumper car 1 is traveling to the east at 5.62 m/s, and bumper car 2 is traveling 60.0 south of west at 10.00 m/s. They collide and stick together, as the driver of one car reaches out and grabs hold of the other driver. The two bumper cars move off together after the collision, and friction is negligible between the cars and the ground. a. If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of the bumper cars immediately after the collision? b. What is the kinetic energy lost in the collision? c. Compare your answers to part (b) from this and Problem 54. Is one answer larger than the other? Discuss and explain any differences you find.arrow_forward
- A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 to the horizon at a speed of 50.0 m/s. At the highest point in its flight, the projectile breaks into three parts of mass 1.0 kg, 0.7 kg, and 0.3 kg. The 1.0-kg part falls straight down after breakup with an initial speed of 10.0 m/s, the 0.7-kg part moves in the original forward direction, and the 0.3-kg part goes straight up. Launch a. Find the speeds of the 0.3-kg and 0.7-kg pieces immediately after the break-up. b. How high from the break-up point does the 0.3-kg piece go before coming to rest? c. Where does the 0.7-kg piece land relative to where it was fired from?arrow_forwardA massive tractor is rolling down a country road. In a perfectly inelastic collision, a small sports car runs into the machine from behind. (i) Which vehicle experiences a change in momentum of larger magnitude? (a) The car does. (b) The tractor does. (c) Their momentum changes are the same size. (d) It could be either vehicle. (ii) Which vehicle experiences a larger change in kinetic energy? (a) The car does. (b) The tractor does. (c) Their kinetic energy changes are the same size. (d) It could be either vehicle.arrow_forwardTwo metersticks are connected at their ends as shown in Figure P10.18. The center of mass of each individual meterstick is at its midpoint, and the mass of each meterstick is m. a. Where is the center of mass of the two-stick system as depicted in the figure, with the origin located at the intersection of the sticks? b. Can the two-stick system be balanced on the end of your finger so that it remains lying flat in front of you in the orientation shown? Why or why not? FIGURE P10.18 (a) The center of mass of the stick on the x axis would be at (0.5 m, 0), and the center of mass of the stick on the stick on the y axis be at (0, 0.5 m), assuming the sticks are uniform. We can then use Equation 10.3 to find the x and y coordinates of the center of mass. xCM=1Mj=1nmjxj=12m[m(0.50m)]=0.25myCM=1Mj=1nmjyj=12m[m(0.50m)]=0.25m The location of the center of mass is (0.25m,0.25m) (b) No. The location of the center of mass is not located on the object, so your finger would not be in contact with the object. In a different orientation, balancing by applying a force at the center of mass might be possible, but not in the orientation shown.arrow_forward
- A cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?arrow_forwardInitially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide elastically in the trough of the track. If m2 = 4 m1, m1 = 0.045 kg, and h = 0.65 m, what is the velocity of each ball after the collision?arrow_forwardA tennis ball of mass mt is held just above a basketball of mass mb, as shown in Figure P8.22. With their centers vertically aligned, both are released from rest at the same moment so that the bottom of the basketball falls freely through a height h and strikes the floor. Assume an elastic collision with the ground instantaneously reverses the velocity of the basketball while the tennis ball is still moving down because the balls have separated a bit while falling. Next, the two balls meet in an elastic collision. (a) To what height does the tennis ball rebound? (b) How do you account for the height in (a) being larger than h? Does that seem like a violation of conservation of energy? Figure P8.22arrow_forward
- A 5.00-g bullet moving with an initial speed of v = 400 m/s is fired into and passes through a 1.00-kg block as shown in Figure P8.57. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant 900 N/m. The block moves d = 5.00 cm to the right after impact before being brought to rest by the spring. Find (a) the speed at which the bullet emerges from the block and (b) the amount of initial kinetic energy of the bullet that is converted into internal energy in the bullet-block system during the collision. Figure P8.57arrow_forwardReview. A chain of length L and total mass M is released from rest with its lower end just touching the top of a table as shown in Figure P9.96a. Find the force exerted by the table on the chain after the chain has fallen through a distance x as shown in Figure P9.96b. (Assume each link comes to rest the instant it reaches the table.)arrow_forwardA space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY