Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 38, Problem 38.12OQ
Off in the distance, you see the headlights of a car, but they are indistinguishable from the single headlight of a motorcycle. Assume the car’s headlights are now switched from low beam to high beam so that the light intensity you receive becomes three times greater. What then happens to your ability to resolve the two light sources? (a) It increases by a factor of 9. (b) It increases by a factor of S. (c) It remains the same. (d) It becomes one-third as good. (e) Ii becomes one-ninth as good.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A flashlight is used to propel an 85 kg reflective load in space. If the flashlight emits 1W of light in a parallel beam for 1 hour, and the entire beam falls on the surface of the load, find how far the load will have moved at the end of the hour. Assuming it started at rest. (Hint: the force, mass, and acceleration are related through F=m*a; you should also use the physics equation relating position, velocity, and acceleration).
Plane-polarized light is incident on a single polarizing disk, with the direction of E. parallel to the direction of the transmission axis. Through what
angle should the disk be rotated so that the intensity in the transmitted beam is reduced by a factor of each of the following?
(a) 2.05
(b) 4.40
(c) 6.2
O
O
O
Plane-polarized light is incident on a single polarizing disk with the direction of Eo parallel to the direction of the transmission axis. Through what angle should the disk be rotated so that the intensity in the transmitted beam is reduced by a factor of:
(a) 3.20
19.087
X
Your response differs from the correct answer by more than 10%. Double check your calculations.º
(b) 5.20
(c) 11.4
Chapter 38 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 38 - Suppose the slit width in Figure 37.4 is made half...Ch. 38 - Consider the central peak in the diffraction...Ch. 38 - Cats eyes have pupils that can be modeled as...Ch. 38 - Suppose you are observing a binary star with a...Ch. 38 - Ultraviolet light of wavelength 350 nm is incident...Ch. 38 - A polarizer for microwaves can be made as a grid...Ch. 38 - You are walking down a long hallway that has many...Ch. 38 - Certain sunglasses use a polarizing material to...Ch. 38 - What is most likely to happen to a beam of light...Ch. 38 - In Figure 38.4, assume the slit is in a barrier...
Ch. 38 - A Fraunhofer diffraction pattern is produced on a...Ch. 38 - Consider a wave passing through a single slit....Ch. 38 - Assume Figure 38.1 was photographed with red light...Ch. 38 - If plane polarized light is sent through two...Ch. 38 - Why is it advantageous to use a large-diameter...Ch. 38 - What combination of optical phenomena causes the...Ch. 38 - Prob. 38.10OQCh. 38 - When unpolarized light passes through a...Ch. 38 - Off in the distance, you see the headlights of a...Ch. 38 - Prob. 38.1CQCh. 38 - Holding your hand at arms length, you can readily...Ch. 38 - Prob. 38.3CQCh. 38 - (a) Is light from the sky polarized? (b) Why is it...Ch. 38 - Prob. 38.5CQCh. 38 - If a coin is glued to a glass sheet and this...Ch. 38 - Fingerprints left on a piece of glass such as a...Ch. 38 - A laser produces a beam a few millimeters wide,...Ch. 38 - Prob. 38.9CQCh. 38 - John William Strutt, Lord Rayleigh (1842-1919),...Ch. 38 - Prob. 38.11CQCh. 38 - Prob. 38.12CQCh. 38 - Light of wavelength 587.5 nm illuminates a slit of...Ch. 38 - Heliumneon laser light ( = 632.8 nm) is sent...Ch. 38 - Sound with a frequency 650 Hz from a distant...Ch. 38 - A horizontal laser beam of wavelength 632.8 nm has...Ch. 38 - Coherent microwaves of wavelength 5.00 cm enter a...Ch. 38 - Light of wavelength 540 nm passes through a slit...Ch. 38 - A screen is placed 50.0 cm from a single slit,...Ch. 38 - A screen is placed a distance L from a single slit...Ch. 38 - Assume light of wavelength 650 nm passes through...Ch. 38 - What If? Suppose light strikes a single slit of...Ch. 38 - A diffraction pattern is formed on a screen 120 cm...Ch. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 38.13PCh. 38 - The pupil of a cats eye narrows to a vertical slit...Ch. 38 - The angular resolution of a radio telescope is to...Ch. 38 - A pinhole camera has a small circular aperture of...Ch. 38 - The objective lens of a certain refracting...Ch. 38 - Yellow light of wavelength 589 nm is used to view...Ch. 38 - What is the approximate size of the smallest...Ch. 38 - A heliumneon laser emits light that has a...Ch. 38 - To increase the resolving power of a microscope,...Ch. 38 - Narrow, parallel, glowing gas-filled tubes in a...Ch. 38 - Impressionist painter Georges Seurat created...Ch. 38 - A circular radar antenna on a Coast Guard ship has...Ch. 38 - Prob. 38.25PCh. 38 - Prob. 38.26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Three discrete spectral lines occur at angles of...Ch. 38 - The laser in a compact disc player must precisely...Ch. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - A diffraction grating has 4 200 rulings/cm. On a...Ch. 38 - The hydrogen spectrum includes a red line at 656...Ch. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Light of wavelength 500 nm is incident normally on...Ch. 38 - A wide beam of laser light with a wavelength of...Ch. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Potassium iodide (Kl) has the same crystalline...Ch. 38 - Prob. 38.40PCh. 38 - Prob. 38.41PCh. 38 - Why is the following situation impossible? A...Ch. 38 - Prob. 38.43PCh. 38 - The angle of incidence of a light beam onto a...Ch. 38 - Unpolarized light passes through two ideal...Ch. 38 - Prob. 38.46PCh. 38 - You use a sequence of ideal polarizing niters,...Ch. 38 - An unpolarized beam of light is incident on a...Ch. 38 - The critical angle for total internal reflection...Ch. 38 - For a particular transparent medium surrounded by...Ch. 38 - Three polarizing plates whose planes are parallel...Ch. 38 - Two polarizing sheets are placed together with...Ch. 38 - In a single-slit diffraction pattern, assuming...Ch. 38 - Laser light with a wavelength of 632.8 nm is...Ch. 38 - Prob. 38.55APCh. 38 - Prob. 38.56APCh. 38 - Prob. 38.57APCh. 38 - Two motorcycles separated laterally by 2.30 m are...Ch. 38 - The Very Large Array (VLA) is a set of 27 radio...Ch. 38 - Two wavelengths and + (with ) are incident on...Ch. 38 - Review. A beam of 541-nm light is incident on a...Ch. 38 - Prob. 38.62APCh. 38 - Prob. 38.63APCh. 38 - Prob. 38.64APCh. 38 - Prob. 38.65APCh. 38 - Prob. 38.66APCh. 38 - Prob. 38.67APCh. 38 - A pinhole camera has a small circular aperture of...Ch. 38 - Prob. 38.69APCh. 38 - (a) Light traveling in a medium of index of...Ch. 38 - The intensity of light in a diffraction pattern of...Ch. 38 - Prob. 38.72APCh. 38 - Two closely spaced wavelengths of light are...Ch. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 38.75CPCh. 38 - A spy satellite can consist of a large-diameter...Ch. 38 - Suppose the single slit in Figure 38.4 is 6.00 cm...Ch. 38 - In Figure P37.52, suppose the transmission axes of...Ch. 38 - Consider a light wave passing through a slit and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An unpolarized beam of light is incident on a stack of ideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beams intensity is reduced in the three following cases. (a) Three filters are in the stack, each with its transmission axis at 45.0 relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0 relative to the preceding filter. (c) Seven filters are in the stack, each with its transmission axis at 15.0 relative to the preceding filter. (d) Comment on comparing the answers to parts (a), (b), and (c).arrow_forwardIn Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forwardTwo light sources of identical strength are placed 10m apart. An object is to be placed at a point P on a line l, parallel to the line joining the light sources and at a distance d meters from it (see the figure). We want to locate P on, so that the intensity of illumination is minimized. We need to use the fact that the intensity of illumination for a single source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. a) Find an expression for the intensity l(x) at the point P. b) If d = 5m, use graphs of l(x) and l'(x) to show that the intensity is minimized when x = 5m, that is, when P is at the midpoint of l. c) If d = 10m, show that the intensity (perhaps surprisingly) is not minimized at the midpoint. d) Somewhere between d = 5m and d = 10m there is a transitional value of d at which the point of minimal illumination abruptly changes. Estimate this value of d by graphical methods. Then find the exact value…arrow_forward
- Plane-polarized light is incident on a single polarizing disk, with the direction of E0 parallel to the direction of the transmission axis. Through what angle should the disk be rotated so that the intensity in the transmitted beam is reduced by a factor of each of the following?(a) 2.55 (b) 4.05 (c) 6.4arrow_forwardUnpolarized light passes through two Polaroid sheets. The transmission axis of the analyzer makes an angle of 50.0° with the axis of the polarizer. (a) What fraction of the original unpolarized light is transmitted through the analyzer? (Enter your answer to at least three decimal places.) (b) What fraction of the original light is absorbed by the analyzer?arrow_forwardUnpolarized light passes through two Polaroid sheets. The transmission axis of the analyzer makes an angle of 43.7° with the axis of the polarizer.(a) What fraction of the original unpolarized light is transmitted through the analyzer? (Enter your answer to at least three decimal places.) (b) What fraction of the original light is absorbed by the analyzer?arrow_forward
- In the figure, light from ray A refracts from material 1 (n₁ = 1.73) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.40). (a) What is the value of incident angle BA? (b) If 8A is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle Og? (d) If Og is decreased, does part of the light refract into material 3? OB I ng no 121arrow_forwardThe electric field vector of a monochromatic light beam is given by: (a) Determine the direction and direction of propagation of the wave. (b) Determine the values of λ and ω. Does this wave belong to the visible spectrum? If so, what color will be observed? (c) Determine the magnetic field vector. (d) Assuming that the beam normally strikes a surface, determine its intensity.arrow_forwardUnpolarized light passes through two Polaroid sheets. The transmission axis of the analyzer makes an angle of 35.2° with the axis of the polarizer. (a) What fraction of the original unpolarized light is transmitted through the analyzer? (Enter your answer to at least three decimal places.) 0.334 (b) What fraction of the original light is absorbed by the analyzer? 0.666 Your response differs from the correct answer by more than 100%. Need Help? Read It 9:50 PM 4/11/2021 hp home end 12 delete fio prt scr f9arrow_forward
- Unpolarized light that has an intensity of I0 = 840 W/m^2 is incident on a series of polarizing filters as shown in Figure. If the intensity of the light after the final filter is I3 = 84 W/m^2, what is the orientation of the second polarizer relative to the x axis (denoted q in the figure)? Enter the smaller possible angle between 0 and 90∘. Hint: cos(90−θ)=sinθ and 2sinθcosθ=sin2θ. (Express your answer to two significant figures.)arrow_forwardA light wave has a frequency of 5.06 x 1014 cycles per second. ka) What is the wavelength? 10-7 m (b) According to the table below, what color would you observe? X (Click to select) ✓ Red Orange Yellow Green Blue Violet Color What is the energy of a gamma photon of frequency 2.32 × 1020 Hz? X -13 x 10 J What is the speed of light traveling through glass? Assume that the index of refraction of glass for the light used is 1.50. 108 m/s What is the energy of a photon of violet light with a frequency of 6.99 × 1014 Hz? X x 10- wavelength (in 107 m) 6.25-7.90 6.00-6.24 5.77-5.99 4.92-5.76 4.55-4.91 3.90-4.54 19 J What is the energy of a photon of violet light with a frequency of 7.45 × 1014 Hz? -19 x 10 J At a particular location and time, sunlight is measured on a 1.00 square meter solar collector with an intensity of 1153 W/m2. If the peak intensity of this sunlight has a wavelength of 5.60 x 10-7 m, how many photons are arriving each second? x 1021 Photon/sarrow_forwardPleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY