Light of wavelength 632.8 nm illuminates a single slit, and a diffraction pattern is formed on a screen 1.00 m from the slit. (a) Using the data in the following table, plot relative intensity versus position. Choose an appropriate value for the slit width a and, on the same graph used for the experimental data, plot the theoretical expression for the relative intensity I I m a x = sin 2 ϕ ϕ 2 where ϕ = ( π a sin θ )/ λ. (b) What value of a gives the best fit of theory and experiment? Position Relative to Maximum (mm) Relative Intensity 0 1.00 0.8 0.95 1.6 0.80 3.2 0.39 4.8 0.079 6.5 0.003 8.1 0.036 9.7 0.043 11.3 0.013 12.9 0.000 3 14.5 0.012 16.1 0.015 17.7 0.004 4 19.3 0.000 3
Light of wavelength 632.8 nm illuminates a single slit, and a diffraction pattern is formed on a screen 1.00 m from the slit. (a) Using the data in the following table, plot relative intensity versus position. Choose an appropriate value for the slit width a and, on the same graph used for the experimental data, plot the theoretical expression for the relative intensity I I m a x = sin 2 ϕ ϕ 2 where ϕ = ( π a sin θ )/ λ. (b) What value of a gives the best fit of theory and experiment? Position Relative to Maximum (mm) Relative Intensity 0 1.00 0.8 0.95 1.6 0.80 3.2 0.39 4.8 0.079 6.5 0.003 8.1 0.036 9.7 0.043 11.3 0.013 12.9 0.000 3 14.5 0.012 16.1 0.015 17.7 0.004 4 19.3 0.000 3
Solution Summary: The author explains the plot of relative intensity versus position for the theoretical and experimental expressions.
Light of wavelength 632.8 nm illuminates a single slit, and a diffraction pattern is formed on a screen 1.00 m from the slit. (a) Using the data in the following table, plot relative intensity versus position. Choose an appropriate value for the slit width a and, on the same graph used for the experimental data, plot the theoretical expression for the relative intensity
I
I
m
a
x
=
sin
2
ϕ
ϕ
2
where ϕ = (πa sin θ)/λ. (b) What value of a gives the best fit of theory and experiment?
8.114 CALC A Variable-Mass Raindrop. In a rocket-propul-
sion problem the mass is variable. Another such problem is a rain-
drop falling through a cloud of small water droplets. Some of these
small droplets adhere to the raindrop, thereby increasing its mass
as it falls. The force on the raindrop is
dp
dv
dm
Fext
=
+
dt
dt
dt
=
Suppose the mass of the raindrop depends on the distance x that it
has fallen. Then m kx, where k is a constant, and dm/dt = kv.
This gives, since Fext
=
mg,
dv
mg = m
+ v(kv)
dt
Or, dividing by k,
dv
xgx
+ v²
dt
This is a differential equation that has a solution of the form
v = at, where a is the acceleration and is constant. Take the initial
velocity of the raindrop to be zero. (a) Using the proposed solution
for v, find the acceleration a. (b) Find the distance the raindrop has
fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of
the raindrop at t = 3.00 s. (For many more intriguing aspects of
this problem, see K. S. Krane, American Journal of…
8.13 A 2.00-kg stone is sliding Figure E8.13
F (kN)
to the right on a frictionless hori-
zontal surface at 5.00 m/s when
it is suddenly struck by an object
that exerts a large horizontal
force on it for a short period of 2.50
time. The graph in Fig. E8.13
shows the magnitude of this force
as a function of time. (a) What
impulse does this force exert on
t (ms)
15.0
16.0
the stone? (b) Just after the force stops acting, find the magnitude
and direction of the stone's velocity if the force acts (i) to the right
or (ii) to the left.
Chapter 38 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY