Concept explainers
Light of wavelength 632.8 nm illuminates a single slit, and a diffraction pattern is formed on a screen 1.00 m from the slit. (a) Using the data in the following table, plot relative intensity versus position. Choose an appropriate value for the slit width a and, on the same graph used for the experimental data, plot the theoretical expression for the relative intensity
where ϕ = (πa sin θ)/λ. (b) What value of a gives the best fit of theory and experiment?
Position Relative to Maximum (mm) | Relative Intensity |
0 | 1.00 |
0.8 | 0.95 |
1.6 | 0.80 |
3.2 | 0.39 |
4.8 | 0.079 |
6.5 | 0.003 |
8.1 | 0.036 |
9.7 | 0.043 |
11.3 | 0.013 |
12.9 | 0.000 3 |
14.5 | 0.012 |
16.1 | 0.015 |
17.7 | 0.004 4 |
19.3 | 0.000 3 |
Trending nowThis is a popular solution!
Chapter 38 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Consider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forwardTwo slits of width 2 m, each in an opaque material, are separated by a center-to-center distance of 6 m. A monochromatic light of wavelength 450 nm is incident on the double-slit. One finds a combined interference and diffraction pattern on the screen. (a) How many peaks of the interference will be observed in the central maximum of the diffraction pattern? (b) How many peaks of the interference will be observed if the slit width is doubled while keeping the distance between the slits same? (c) How many peaks of interference will be observed if the slits are separated by twice the distance, that is, 12 m, while keeping the widths of the slits same? (d) What will happen in (a) if instead of 450-nm light another light of wavelength 680 nm is used? (e) What is the value of the ratio of the intensity of the central peak to the intensity of the next bright peak in (a)? (f) Does this ratio depend on the wavelength of the light? (g) Does this ratio depend on the width or separation of the slits?arrow_forwardThe width of the central peak in a single-slit diffraction pattern is 5.0 mm. The wavelength of the light is 600 nm, and the screen is 2.0 m from the slit. (a) What is the width of the slit? (b) Determine the ratio of the intensity at 4.5 mm from the center of the pattern to the intensity at the center.arrow_forward
- (a) Find the angle of the third diffraction minimum for 633-nm light falling on a slit of width 20.0 m. (b) What slit width would place this minimum at 85.0°?arrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardMonochromatic light of wavelength 530 nm passes through a horizontal single slit of width 1.5 m in an opaque plate. A screen of dimensions 2.0m2.0m is 1.2 m away from the slit. (a) Which way is the diffraction pattern spread out on the screen? (b) What are the angles of the minima with respect to the center? (c) What are the angles of the maxima? (d) How wide is the central bright fringe on the screen? (e) How wide is the next bright fringe on the screen?arrow_forward
- In a single-slit diffraction experiment, there is a minimum of intensity for orange light (l= 600 nm) and a minimum of intensity for blue-green light (l = 500 nm) at the same angle of 1.00 mrad. For what minimum slit width is this possible?arrow_forwardIn a modified Young's double slit experiment, a monochromatic uniform and parallel beam of light of wavelength 6000 A and intensity (10/) Wm2 is incident normally on two apertures A and B of radii 0.001 m and 0.002 m respectively. A perfectly transparent film of thickness 2000 A and refractive index 1.5 for the wavelength of 6000A is placed in front of aperture A (see figure). Calculate the power (in W) received at the focal spot F of the lens. The lens is symmetrically placed with respect to the apertures. Assume that 10% of the power received by each aperture goes in the original direction and is brought to the focal spot.arrow_forwardIn an interference experiment using a monochromatic source emitting light of wavelength å, the fringes are produced by two long, narrow slits separated by a distance d. The fringes are formed on a screen which is situated at a distance D >> d. Write down an expression for the fringe width w. Please use Il * II for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate. Use "lambda" (without the quotes) for å in the equation box. For example, use d*lambda for d2. Please use the "Display response" button to check you entered the answer you expect.arrow_forward
- You measure three segments of the distance between a diffraction slit an the screen on which the pattern forms: x1 = (14.7 ± 0.1) cm, x2 = (9.9 ± 0.3) cm, and x3 = (17.2 ± 0.3) cm. What is the uncertainty of the total distance x1 + x2 + x3?arrow_forwardA diffraction grating has 1550 slits/cm. How many full spectral orders can be seen (400 to 700 nm) when it is illuminated by white light? Express your answer as an integer. Find m.arrow_forwardSuppose a laser shines through a double slit with separation d. The patern on the screen is .9 m from the slits. The distance between the two bright fringes (△y) is measured in mm. See the attatched plot. What is the wave number for the light in inverse nanometers?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill