Concept explainers
A diffraction grating has 4 200 rulings/cm. On a 2.00 m from the grating. it is found that for a particular order m, the maxima corresponding lo two closely spaced wavelengths of sodium (589.6 nm and 589.6 nm) are separated by 1.54 mm. Determine the value of m.
The value of
Answer to Problem 38.31P
The value of
Explanation of Solution
Given info: The number a grating is
The first wavelength of sodium is
For the first order the value of
The formula to calculate separation between gratings is,
Here,
Substitute
It remains same for all the order.
The formula for diffraction grating is,
Here,
Rearrange the above expression for
Substitute
Write the expression for tan of the above angle,
Substitute
The formula for diffraction grating is for second wavelength is,
Here,
Rearrange the above expression for
Substitute
Write the expression for tan of the above angle,
Substitute
The difference between the tan of the two angle is,
Substitute
Write the formula to calculate position of central
Here,
Substitute
For the second order the value of
The formula for diffraction grating is,
Here,
Rearrange the above expression for
Substitute
Write the expression for tan of the above angle,
Substitute
The formula for diffraction grating is for second wavelength is,
Here,
Rearrange the above expression for
Substitute
Write the expression for tan of the above angle,
Substitute
The difference between the tan of the two angle is,
Substitute
Write the formula to calculate position of central
Here,
Substitute
For the third order the value of
The formula for diffraction grating is,
Here,
Rearrange the above expression for
Substitute
Write the expression for tan of the above angle,
Substitute
The formula for diffraction grating is for second wavelength is,
Here,
Rearrange the above expression for
Substitute
Write the expression for tan of the above angle,
Substitute
The difference between the tan of the two angle is,
Substitute
Write the formula to calculate position of central
Here,
Substitute
From the above calculation it is clear that only for second order the maxima of two closely spaced wavelength of sodium
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 38 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardX-rays of wavelength 0.103 nm reflects off a crystal and a second-order maximum is recorded at a Bragg angle of 25.5°. What is the spacing between the scattering planes in this crystal?arrow_forward
- An X-ray scattering experiment is performed on a crystal whose atoms form planes separated by 0.440 nm. Using an X-ray source of wavelength 0.548 nm, what is the angle (with respect to the planes in question) at which the experimenter needs to illuminate the crystal in order to observe a first-order maximum?arrow_forwardA first-order Bragg reflection maximum is observed when a monochromatic X-ray falls on a crystal at a 32.3° angle to a reflecting plane. What is the wavelength of this X-ray?arrow_forward632.8 nm) is used to calibrate a diffraction grating. If the first-order maximum occurs at 21.0°, what is the spacing between adjacent grooves in the grating? (In this problem, assume that the light is incident normally on the grating.) μm A helium-neon laser (1 =arrow_forward
- The limit to the eye’s visual acuity is related to diffraction by the pupil.Randomized VariablesD = 3.05 mmdh = 1.4 m Part (a) What is the angle between two just-resolvable points of light for a 3.05 mm diameter pupil in radians, assuming an average wavelength of 550 nm? Part (b) Take your result to be the practical limit for the eye. What is the greatest possible distance in km a car can be from you if you can resolve its two headlights, given they are 1.4 m apart? Part (c) What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye in mm?arrow_forwardAn x-ray beam of a certain wavelength is incident on an NaCl crystal, at 30.0° to a certain family of reflecting planes of spacing 39.8 pm. If the reflection from those planes is of the first order, what is the wavelength of the x rays?arrow_forwardds. The metal Rubidium has BCC crystal structure of hike angle of diffraction for the 32.1 set of planes occurs at 27° first order reflection when monochromatic X-radiation wavelength of 0.0721 am is used having Compute (a) The inter-planar spacing for this set of planes. (b) Atomic radius for the rubidium atom. aarrow_forward
- To make a hologram using an Argon laser (1 = 0.488 µm), the maximum angle between objective and reference beams is 0max resolution (or spatial frequency) of the holographic recording film (fo – lines per mm)? 40°. What is the requirement on the minimum 0.633 um). Assume that z, When the hologram is reconstructed using a HeNe laser (A 10cm, z, = 2z,, Zp transversal and axial magnification (M; and Ma). = 00, please compute virtual and real image locations (Fz;), thearrow_forwardProblem 1: In a double slit experiment the first minimum for 415 nm violet light is at an angle of 42°. Randomized Variables 2 = 415 nm e = 42 ° Find the distance between the two slits in micrometers. d= 8 9 5 6 sin() cos() tan() 7 HOME cotan() asin() acos() E A 4 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() END O Degrees O Radians Vol BACKSPACE DEL CLEAR +arrow_forwardTwo point sources of light are separated by 5.5 cm a. As viewed through a 13 μmμm diameter pinhole, what is the maximum distance from which they can be resolved if red light ( λλ = 690 nmnm) is used? b. If violet light ( λλ = 420 nmnm ) is used?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning