Concept explainers
Consider an array of parallel wires with uniform spacing of 1.30 cm between centers. In air at 20.0°C, ultrasound with a frequency of 37.2 kHz from a distant source is incident perpendicular to the array. (a) Find the number of directions on the other side of the array in which there is a maximum of intensity. (b) Find the angle for each of these directions relative to the direction of the incident beam.
(a)
Answer to Problem 38.27P
Explanation of Solution
Given info: Temperature of air is
The wavelength for a diffraction grating can be given as,
Here,
Substitute
The condition for the bright fringe in diffraction can be given as,
Here,
Substitute
The maximum number of direction possible can be given as,
Here,
Substitute
Thus, the number of directions on the other side of the array for maximum intensity is three.
Conclusion:
Therefore, the number of directions on the other side of the array for maximum intensity is three.
(b)
Answer to Problem 38.27P
Explanation of Solution
Given info: Temperature of air is
The condition for a diffraction grating as in equation (1) can be given as,
Rearrange the above expression for
Substitute
As the range of sine function is
Substitute
Thus,
Substitute
Thus,
Substitute
Thus,
Conclusion:
Therefore, the angle for each of the directions relative to the direction of the incident beam is
Want to see more full solutions like this?
Chapter 38 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- A circular diaphragm 62.72 cm in diameter oscillates at a frequency of 15.97 kHz as an underwater source of sound used for submarine detection. Far from the source, the sound intensity is distributed as the diffraction pattern of a circular hole whose diameter equals that of the diaphragm. Take the speed of sound in water to be 1450. m/s, and find the angle (in degrees) between the normal to the diaphragm and a line from the diaphragm to the first minimum.arrow_forwardTwo observers stand 20 m apart on a line that connects them and a spherical light source. If the observer nearer the source measures a light intensity 59 %% greater than the other observer, how far is the nearer observer from the source?arrow_forwardA steady sound with a frequency of f = 750 Hz is produced by a source located far from an open doorway set in a sound- absorbing wall. The sound waves pass through the w = 1.18 m-wide doorway. (Assume the speed of sound is 343 m/s.) (a) If a person walks parallel to the wall beyond the open doorway, how many diffraction minima will she encounter? (b) What are the angular directions (in degrees) of these diffraction minima? (Enter the magnitudes from smallest to largest starting with the first answer blank. Enter NONE in any remaining answer blanks. Do not enter any duplicate numerical values.) smallest 土 土 largestarrow_forward
- A light beam from a medium of refractive index 1 is incident normally on the vertical face of the prism as illustrated in the figure. The refractive index of the prism is 1.8. Find the maximum α for which no light leaves the prism through the inclined face and if within the medium the light has a frequency of 2.8 × 1014Hz, every how many meters is the undulating movement of this wave repeated within the prism?arrow_forwardA sound wave traveling in air (v = 340 m/s) is incidenton a surface of water at an angle of 5.0°. (a) Calculate the direc-tion of the refracted sound wave in the water (water =1400 m/s).(b) Draw pictures of each situation showing the interference between the media, the normal line, the incident, reflected and refracted rays and the angles of these rays to the normal line.arrow_forward(a) A circular diaphragm 60 cm in diameter oscillates at a frequency of 25 kHz as an underwater source of sound used for submarine detection. Far from the source, the sound intensity is distributed as the diffraction pattern of a circular hole whose diameter equals that of the diaphragm.Take the speed of sound in water to be 1450 m/s and find the angle between the normal to the diaphragm and a line from the diaphragm to the first minimum. (b) Is there such a minimum for a source having an (audible) frequency of 1.0 kHz?arrow_forward
- The wavelength of red helium-neon laser light in air is 632.8 nm. (a) What is its frequency? Hz (b) What is its wavelength in glass that has an index of refraction of 1.55? nm (c) What is its speed in the glass? Mm/sarrow_forwardLight of frequency = 600 THz is traveling in air which has index of refraction nair = 1.00. It encounters a smooth boundary layer with water (nH₂O = 1.33) with an angle of incidence ₁ = 60°. a) Draw a sketch of the situation, highlighting the angle of incidence (a), the angle of reflection (,), and the angle of refraction (b). b) Calculate the angle of reflection and the angle of refraction. c) Calculate the wavelength of the light in the incident ray, the reflected ray and the refracted ray.arrow_forwardPhysics A tumor lies 2.9cm below the surface of an organ, which is separated from the skin by 3.4cm of fatty tissue. To locate the tumour, a thin beam of ultrasound is emitted which is reflected by the tumour. If the angle of incidence at the surface of the organ is 30.7degrees and sound travels at a 16% slower velocity through the organ than through fat tissue, what will be the distance, on the skin, between the entry point and the exit point of the beam?arrow_forward
- Hand written solutions are strictly prohibited.arrow_forwardIn a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell in 17.0 ns. When a slab of glass 0.840 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from the laser to the photocell. What is the wavelength of the light in the glass?arrow_forwardA tumor is 1.9 cm below the surface of an organ, which is separated from the skin by 2.9 cm of fatty tissue. To locate the tumour, a thin beam of ultrasound is emitted which is reflected by the tumour. If the angle of incidence at the surface of the organ is 34.5° and the sound propagates at a speed 12% lower in the organ than in the adipose tissue, what will be the distance, on the skin, between the entry point and the exit point of the beam?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON