Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 36.3, Problem 36.3GI
To determine
The total energy of the system
(a)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
8. Consider a potential barrier defined by
0
U(x)=Uo
0
T=
x L
with Up = 1.00 eV. An electron with energy E> 1 eV moving in the positive -
direction is incident on this potential. The transmission probability for this situation
is given by
4(E/U₁) [(E/U₁)-1]
sin² √2m(E-Uo) L/h +4(E/Uo) [(E/U₁) - 1]
It is found that the reflection probability is zero for E= 1.10 eV and non-zero for
smaller incident energies. What is the width of the potential barrier L?
The probability density function (PDF) for electrons to be detected on the x-axis
between 0 nm and 1.0 nm is shown below.
What is the probability of finding the electron between x = 0.5 nm and x =
1.0 nm?
|w(x)* (nm')
2.0
1.0
0.5
x (nm)
1.0
A stream of electrons, each with a kinetic energy of 450 eV, is sent through a potential-free region toward a potential barrier of
"height" 500 eV and thickness 0.300 nm. The stream consists of 1 × 1015 electrons. How many should tunnel through the barrier? Pick
the closest answer. The electron mass is 9.10938 x 10-31 kg.
O 8 x 107
O 8 × 10⁹
3 x 10³
6 x 104
4x 107
4 x 105
O 1 x 106
O 7 x 104
Ⓒ 9 × 105
O 7 x 106
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Similar questions
- Pulsed lasers are very similar to regular lasers, except they don't continuously emit laser light. Baby spice is looking at one on Ebay, and she finds a pulsed He-Ne laser that emits a cylindrical beam of light with a diameter of 0.750 cm. Each pulse lasts for 1.30 ns, and each burst contains an amount of energy equal to 3.00 J. Baby Spice has the following questions about this laser. (a) What is the length of each pulse of laser light? m (b) What is the average energy per unit volume for each pulse? J/m³arrow_forwardA potential well has 4 energy levels as given here: Energy of the state (eV) 13 12 9 4 Suppose that there are three electrons in the well, and that the system is in the first excited state. If the system emits a photon, what energy could the photon have? O (a) 3 eV Ⓒ (b) 5 eV O (c) 4 eV O (d) 8 eV (e) 9 eV x X 0%arrow_forward(2nx sin \1.50. 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: 4 = sin(ny) sin 2.00. What is the energy of the system? O 6h?/8m O 4h²/8m O 3h2/8m O none are correctarrow_forward
- A thin solid barrier in the xy-plane has a 12.6µm diameter circular hole. An electron traveling in the z-direction with vx 0.00m/s passes through the hole. Afterward, within what range is vx likely to be?arrow_forwardElectrons, thermionically emitted from a cathode in a vacuum valve, travel across a potential difference of 1000V to the anode. What is the velocity of the electrons as a fraction of the velocity of light, c, when they reach the anode? Select one: а. 0.004c b. 0.13c С. 0.063c d. 0.02carrow_forwarda) Determine the quantum mechanical operators for the following: Lx=yPz - ZPy That is, find Îx = ŷêz - 2py where x = x êx = ћд і дх Ly = Zpx - xPz Îy = 2px - xôz ŷ = y Py = b) Determine the commutator i.e. [θ‚΂] - - = x 'y ħ a і ду 2 = z Lz = xpy - ypx Û₂ = âÔy – ŷÂx êz = (΂΂¸ – θÎx)ƒ(xx.2) = ? L y ħ ə і дzarrow_forward
- A certain atom remains in an excited state for about 51.7 ns before emitting a 2.15-eV photon and transitioning to the ground state. What is the uncertainty in the frequency of the photon in Hz?arrow_forwardAn electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on the quant numbers Nx and Ny, the allowed energies are given by E = H^2/8Me ( Nx^2/ Lx^2 + Ny^2/Ly^2) i) assuming Lx and Ly =L. Find the energies of the lowest for all energy levels of the electron ii) construct an energy level diagram for the electron and determine the energy difference between the second exited state and the ground state?arrow_forward13.a. In a Compton scattering, a photon of wavelength (439) nm is collided with an electron and scattered through an angle (69)°. Calculate the energy transferred to the electron in this collision. b. A rectangular block of copper having dimensions (20.5) cm × (20.5) cm × (49) cm. If the resistivity (?) of copper is 17.2 n Ω?, determine its resistance.arrow_forward
- A cloud of 〖"2.5x10"〗^19 electrons move past a given point every 2seconds. How much is the intensity of the electron flow?arrow_forwardA metal has a work function of 1.55 eV. Light with a frequency of 8.25x10^14 Hz is incident on the metal. What is the stopping voltage?arrow_forwardThe energy of a proton is 1.0 MeV below the top of a 6.8-fm-wide energy barrier. What is the probability that the proton will tunnel through the barrier? (1 eV = 1.60 × 10-19 J, mproton = 1.67 × 10-27 kg, ħ = 1.055 × 10-34 J ∙ s, h = 6.626 × 10-34 J ∙ s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College