Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 36, Problem 26E
To determine
The energy of the highest energy electron in terms of the ground state energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron confined to a box has the ground state energy of 2.4 eV.
What is the width of the box in units of nanometers?
To excite an electron in a one-dimensional box from its first excited state to its second excited state requires 23.05 eV.
What is the width of the box? Give your answer in nm.
We are going to use Heisenberg's uncertainty principle to estimate the ground-
state energy of hydrogen. In our model, the electron is confined in a one-
dimensional well with a length about the size of hydrogen, so that Ax = 0.0529
nm. Estimate Ap, and then assume that the ground-state energy is
roughly Ap2/2me. (Give your answer in Joules or electron-volts.)
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Similar questions
- A proton is in a one-dimensional box of width 7.8 pm (1 pm = 1 x 10-¹2 m). The energy of the proton is equal to the absolute value of the ground state of a hydrogen atom. What state is the proton in?arrow_forwardA particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.arrow_forwardC. For a particle of mass 9.10938356×10-31 kg scooting back and forth on a wire of length 13×10-10 m, compute it's energy in the n = 9 state. Use: π = 3.14159265359 and h = 1.0545718×10-34 Js. Eg J. D. What is the rule for the number of nodes for a particle-in-a-box state as a function of its quantum number? Number of nodes = On ΟΙ O n-1 On--1arrow_forward
- An electron is in a three-dimensional box. The xx- and zz-sides of the box have the same length, but the yy-side has a different length. The two lowest energy levels are 2.18 eVeV and 3.47 eVeV, and the degeneracy of each of these levels (including the degeneracy due to the electron spin) is two. What is the length LY for side of the box? What are the lengths LXLX, LZLZ for sides of the box? What is the energy for the next higher energy state? What are the quantum numbers for the next higher energy state? What is the degeneracy (including the spin degeneracy) for the next higher energy state?arrow_forwardA10. An acceptable wavefunction for the + equation is = Aeimo. What is the corresponding eigenvalue for the operator –ih if it is an eigenfunction of the operator? (a) imh (b) mħ (c) mh? (d) ħ A11. Which of the following represents the energy levels of a hydrogen atom? (a) The spacing between the energy levels decreases with increasing quantum number (b) The spacing between the energy levels increases with increasing quantum number (c) The spacing between the energy levels decreases with decreasing quantum number (d) The spacing between the energy levels is the same A12. Which of the following is the eigenfunction of the operator p, = -ih r ar %3D (a) eikr (b) reikr (d) sin(kr) A13. Which of the following correctly describes an electron in the hydrogen atom? (a) The wavefunction is described by the quantum numbers n p d (b) The wavefunction is described by the quantum numbers nI mi (c) The wavefunction is described by the quantum numbers nI ms (d) The wavefunction is described by the…arrow_forwardConsider an electron in the first excited state of a one-dimensional infinite square well of length L=1A°. Calculate the force on either wall during an impact by the electron. Answer Choices: a. 0354 CN 6. 0.245 L c. 0.121μN d. 0.482 ANarrow_forward
- Consider a one-dimensional square potential well with a width of L and depth Vo. An electron is confined within this potential well. a) Calculate the energy levels of the electron in terms of L and Vo. b) Determine the wavelength of the electron associated with its lowest energy state (n=1). c) If the potential well has the width of L=5nm and Vo=10eV, calculate the energy of the electron in its lowest energy state.arrow_forwardThe probability of finding a particle moves in the left quarter of a one-dimensional box of length a for energy level n =2 is: A. 15% В. 20% C. 25% D. 35% E. 50% A C B C c C D C E Carrow_forwardYou have an electron confined in a one-dimensional box and measure its 4th-level energy to be 18.10 eV. What is the width of the box in nanometers? width: nmarrow_forward
- An electron moves with a speed v 1.25 x 10-4c inside a one-dimensional box (V = 0) of length 48.5 nm. The potential is infi nite elsewhere. The particle may not escape the box. What approximate quantum number does the electron have?arrow_forwardWhat is the ground-state energy of (a) an electron and (b) a proton if each is trapped in a one-dimensional infinite potential well that is 273 pm wide? (a) Number 8.083824566 Units eV (b) Number 4.401408127 Units eVarrow_forwardAn electron confined to a box has an energy of 1.63 eV . Another electron confined to an identical box has an energy of 3.67 eV . What is the smallest possible length for those boxes? Express your answer with the appropriate units. L=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning