Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 17E
To determine
Which of the following values are not the successive values of
(a)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Choose the correct spherical polar coordinates for the following figures:
=
(i) r=2,
3 (ii)
(i) r=2,
3 z=3 (iii)
6=
8=
3 (ii)
3.2-3 (iii)
(i) r=2,- (i)
6 =
3,2-3 (iii)
0-
6=
5x
小
4
411
14
#
16
DOLL
S
4支
%
5€
4
包
Angular momentum and Spin. An electron in an H-atom has orbital angular momentum
magnitude and z-component given by
L² = 1(1+1)ħ²,
L₂ = m₂h,
1 = 0,1,2,..., n-1
m₁ = 0, +1, +2, ..., ±l
3
1
S² = s(s+1)h²=h², S₂ = m₂h = + = h
+/-ħ
4
Consider an excited electron (n > 1) on an H-atom.
What is the minimum angle 0min that the S can have with the z-axis?
Clue: the angle a vector with magnitude V from the z-axis can be computed from
cos 0 = V²/V
Fast pls.....
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- X If the orbital angular momentum of an atom is 2 and the perpendicular momentum is 5/2, then the number of possible values of the total angular momentum are:* 5 2 6 All options are wrong الإنجليزيةarrow_forward2 D -e Physical constants (A) (in m) Bohr Model mv² - h = 6.626 x 10-34 Js; Ke² = 2.307 x 10-28 Jm; m = 9.11 x 10-31 kg. The old Bohr model of the hydrogen atom was based on... (1) the assumption that the electron travels on a circle (A) What is the radius of the orbit with n = 5? (B) What is the speed of the orbit with n = 5? Ke² ra and obeys Newton's second law, and (2) the hypothsis that angular momentum is quantized. For the Bohr model, (1) mvr = n (2) 27 OA: 2.774x10-10 OB: 3.468x10-10 OC: 4.334x10-10 OD: 5.418x10-10 DE: 6.773x10-10 OF: 8.466x10-10 OG: 1.058x109 OH: 1.323x10-9 Submit Answer Tries 0/20arrow_forwardThe electron in a certain hydrogen atom has an angular momentum of 2.583×10−34 J.s. What is the largest possible magnitude for the z-component of the angular momentum of this electron? For accuracy, use h=6.626×10−34 J⋅s. find Number Unitsarrow_forward
- Consider an electron is in the level of n= 2 for hydrogen atom. Calculate its angular momentum. (A) 5л h (В) 2h (C) h (D) -arrow_forwardIn a hydrogen atom, the electron is at a distance of 4.768 Å from the nucleus. The angular momentum of the electron is......arrow_forwardA hydrogen atom is in the stationary state (n, I, m) = (5, 3, 1) What is the angle between the angular momentum vector L and Lz? Give you answer to 3 significant figures and in units of degrees, but do not include the units in your answer.arrow_forward
- (a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 x 10⁰ m as the average Earth- Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (Use 7.36 × 1022 kg for the mass of the moon.) 2.889e34 kg. m²/s (b) If the angular momentum of the moon obeys Bohr's quantization rule (L = nħ) determine the value of the quantum number, n. 8.463e67 Your response differs from the correct answer by more than 10%. Double check your calculations. (c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1? 2.3632e-6 X Your response differs from the correct answer by more than 100%.arrow_forwardIt may be argued on theoretical grounds that the radius of the hydrogen atom should depend only on the fundamental constants h, e, the electrostatic force constant k = 1/4πℰ0, and m (the electron’s mass). Use dimensional analysis to show that the combination of these factors that yields a result with dimensions of length is h2kme2.arrow_forwardQuantum Physicsarrow_forward
- 2. a) Problem 8.3 of Textbook: Calculate the frequency of the hydrogen transition n = 101 → n = 100. b) A light photon emitted from a higher energy level ofn = 3 to a lower energy level of n = 2 in hydrogen has a wavelength of 1 = 656.3 nm. Compute the atom distribution ratio N3/N2 at the equilibrium when temperatures are T = 102K.arrow_forwardThe energy of a hydrogen atom is 12.09 eV above its groundstate energy. As a multiple of U, what is the largest angular momentum that this atom could have?arrow_forwardAngular momentum and Spin. An electron in an H-atom has orbital angular momentum magnitude and z-component given by L² = 1(1+1)ħ², Lz = m₁h, 1 = 0,1,2,..., n 1 - m₁ = 0, ±1, ±2, ..., ±l 3 S² = s(s+1) h² = =h²₁ 4 Consider an excited electron (n > 1) on an H-atom. The total angular momentum ] = L + Š, whose magnitude and z-component follow a similar dependence to some quantum numbers j and m; as J² = j(j + 1)ħ², Jz = mjħ 1 S₂ = m₂h = ± = h Where j and m; are quantum numbers which assume values that jumps in steps of one such that j is non-negative and −j ≤ m¡ ≤ j. For a given quantum number 1, what are the (two) possible values for j? Clue: we can use the vector sum relation of angular momenta, then consider the z-component only.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning