Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 36, Problem 53P
To determine
The probability of that the electron in the hydrogen ground state will be found in the radial-distance range
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the zirconium atom ground state has S= 1 and L = 3, what are the permissible values of J? Write the spectroscopic notation for these possible values of S, L, and J. Which one of these is likely to represent the ground state?
A hydrogen atom has a radius of 0.05 nm with a position accuracy of 1.0%. Calculate the uncertainty in the atom’s velocity. Use "E" format for scientific notation (i.e. for 1.23x10, write as 1.23E-9).
Consider the Balmer series discussed in the book (and Prof. Scherer's lecture notes), where the
frequencies are given by:
x (3.29 × 1015 s-1)
n = 3,4,5, ..
v =
Let us focus only on the spectral lines and transitions corresponding to the Balmer series.
a) Suppose the Balmer series of hydrogen is studied using a Franck-Hertz experiment.
What is the threshold voltage required for n=3? How about n=4?
b) The Lyman Series frequencies are given by v = |1- x (3.29 x 1015 s-1). Describe
what is different about these two series of emission frequencies of photons from the
hydrogen atom? That is, what distinguishes one series from the other? (Hint: it may help
to think about the Bohr model interpretation of transitions.)
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Similar questions
- A hydrogen atom has a radius of 0.05 nm with a position accuracy of 1.0%. Calculate the uncertainty in the atom’s velocity. Use "E" format for scientific notation (i.e. for 1.23 x 10, write as 1.23E–9). Do not Include the units in your answer.arrow_forward1 r e 3 do An electron in a hydrogen atom in the n = 2, I = 1 state has R21 = r/2ao 2 6a0 a) Find the most probable distance of the electron from the nucleus. b) Compute the expectation value and compare it with the value obtained in part a.arrow_forwardFind the position expected value for an electron in the ground state of hydrogen. Express your answers in terms of the Bohr radius a. A partio a ground ndarrow_forward
- 5. a) Sketch a polar diagram of the directional dependence of the probability density of a problem of a atom with only one electron for I = 2, ml = 0. b) At what angle 0 does the probability density have its minimum value? c) Where the angular probability density has a value of a quarter of its maximum value?arrow_forwardCalculate the speed of the electron in a hydrogen atom in the state n = 5, in m/s. Express your answer as vx 10° m/s and type in just the value of v. Use three decimals in your answer.arrow_forward▼ Part A For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ap at distance aB? ▸ View Available Hint(s) 15. ΑΣΦ ? Part B For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ag at distance ag from the proton? ▸ View Available Hint(s) [5] ΑΣΦ ? Submit Submitarrow_forward
- We want to look at the angular momentum structure of one electronic level of an atom. a. The atom has orbital angular momentum L, electron spin angular momentum S and nuclear angular momentum I. For very large magnetic fields B, what are the quantum numbers and energies? b. In addition to the static B field along the z axis, we add a transverse oscillating magnetic field. Which states are now coupled by the oscillating field, i.e. between which states are transitions induced?arrow_forwardhelp with modern physics questionarrow_forward(b) Prove that the energy of a trapped particle is quantized. Find the possible relations. Q#2 (a) Explain different types of spectral series of hydrogen atom. Find formula for wavelength of each series. (b) Find the longest wavelength present in the Balmer series of hydrogen, corresponding to the H. line. Q#3 (a) Explain Frank Hertz experiment in detail. Discuss its findings. (b) Explain the difference between a MASER and a LASER. Who was the inventor of MASER? Explain both phenomenon in detail.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning