Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 68P
To determine
The photon wavelength and where in spectrum does it lie.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ruby lasers have chromium atoms doped in an aluminum oxide crystal. The energy level diagram for chromium in a ruby is shown in the figure above.
(a)Calculate the energy of photons that can pump chromium atoms in a ruby laser from the ground state to its second excited state. eV
(b)Calculate the energy of photons that can pump chromium atoms in a ruby laser from the ground state to its third excited state. eV
(c)Calculate the wavelength emitted by the ruby laser (in nm).
nm
a) The element helium is named for the Sun because that is where it was first observed. What is the shortest wavelength that one would expect to observe from a singly ionized helium atom in the atmosphere of the Sun?
b) Suppose light with a wavelength of 388.9 nm is observed from singly ionized helium. What are the initial and final values of the quantum number nn corresponding to this wavelength?
Enter your answers numerically separated by a comma
Your answer is partially correct.
A laser emits light at wavelength A = 598 nm in a beam of diameter 3.7 mm and at an energy-emission rate of 5.5 mW. A detector in
the beam's path absorbs the beam. At what rate per unit area does the detector absorb photons?
Number
1.429048888
Units
photons/s-m^2
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The ion Li2+ makes ail atomic transition from ail n = 4 state to ail n = 2 state, (a) What is the energy of the photon emitted during the transition? (b) What is the wavelength of the photon?arrow_forwardQuestion in photoarrow_forwardPhoton Intensity 3. (a) If light is generated by 2 sources with wavelengths equal to 350 nm and 900 nm, will either one be absorbed by CdS? Explain your answer mathematically. (b) Determine the absorption coefficient for CdS for a wavelength of 900 nm. (c) What percentage of radiation is absorbed by 250 nm of CdS by light with this wavelength (900 nm)?arrow_forward
- An electron is trapped in a is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon? one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon wavelength: Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions to the ground state. wavelength of least energetic photon: m wavelength of most energetic photon: m marrow_forwardThe work function of aluminum is 4.26 ev. What is the maximum velocity of an electron emitted from aluminum after the absorption of a photon of wavelength 117 nm. Give your answer in m/s. Round your answer to 2 decimal places. Add your answer Question 10 A photon Compton scatters from an electron. At what scattering angle for the photon will the electron acquire the largest kinetic energy? 45 degrees 90 degrees C o degress D 180 degreesarrow_forwardThe attatched equation describes the cross section for the photoionization of a hydrogen atom in quantum state n by a photon of wavelength λ. What is the photoionization cross section for a 13.6 eV photon on hydrogen? (Provide an answer in megabarns. A barn is a unit of area commonly used in particle physics that's 10-28 m2).arrow_forward
- The light observed that is emitted by a hydrogen atom is explained by a simple model of its structure with one proton in its nucleus and an electron bound to it, but only with internal energies of the atom satisfying EH=−RH/n2EH=−RH/n2 where RHRH is the Rydberg constant and nn is an integer such as 1, 2, 3 ... and so on. When a hydrogen atom in an excited state emits light, the photon carries away energy and the atom goes into a lower energy state. Be careful about units. The Rydberg constant in eV is 13.605693009 eV That would be multiplied by the charge on the electron 1.602× 10-19 C to give 2.18× 10-18 J A photon with this energy would have a frequency f such that E=hf. Its wavelength would be λ = c/f = hc/E. Sometimes it is handy to measure the Rydberg constant in units of 1/length for this reason. You may see it given as 109737 cm-1 if you search the web, so be aware that's not joules. The following questions are intended to help you understand the connection between…arrow_forwardProblem 4: Ruby lasers have chromium atoms doped in an aluminum oxide crystal. The energy level diagram for chromium in a ruby is shown in the figure. Part (a) What energy photons can pump chromium atoms in a ruby laser from the ground state to its second excited state in eV? Part (b) What is the wavelength of this photon in nm? Part (c) What part of the visible light spectrum is it?arrow_forwardIf you look at it, there is an Ag atom with an atomic number of 47. Then, there are electrons from outside hitting electrons in the base shell (n=1) : a. how much energy does the electron need to bounce off? and is there any energy absorbed by the electrons? b. How much the radiation energy and wavelength produced by the transition of electrons from the L shell (n=2) to the ground shell (n=1) in filling the electron holes?arrow_forward
- please answer question 1arrow_forwardA)Calculate the frequency when an electron drops from n=5 to the n=4 level in a hydrogen atom. Round your answer to 4 significant digits. B)An electron in the hydrogen atom makes a transition from an energy state of principal quantum number ni to the n=2 state. If the photon emitted has a wavelength of 434nm, what is the value of ni? Round your answer to the nearest whole number.)arrow_forwardwith explination please ..arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning