Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 77PP
To determine
The relationship between the energy of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?
An electron with a speed of 1.6×106m/s collides with an atom of element X . Shortly afterward, the atom emits a 1240 nm photon. What was the electron's speed after the collision? Assume that, because the atom is so much more massive than the electron, the recoil of the atom is negligible. Hint: The energy of the photon is not the energy transferred to the atom in the collision.
A hydrogen atom in its ground state absorbs a photon of wavelength 102.5 nm. What is the principal quantum number (n) of the electron after absorbing the photon?
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Lyman series of photons each have an energy capable of exciting the electron of a hydrogen atom from the ground state (energy level 1) to energy levels 2, 3, 4, etc. The wavelengths of the first five photons in this series are 121.6 nm, 102.6 nm, 97.3 nm, 95.0 nm, and 93.8 nm. The ground state energy of hydrogen is −13.6 eV. Based on the wavelengths of the Lyman series, calculate the energies of the first five excited states above ground level for a hydrogen atom to the nearest 0.1 eV.arrow_forwardA hydrogen atom in an excited bound state labeled with prin- cipal quantum number n = 3 absorbs a photon that has wavelength l. The atom is ionized and the electron has kinetic energy 8.00 eV after it has left the atom. What was the wavelength I of the photon?arrow_forwardMystery element X has the electron energy levels shown in the figure below, in which E₁ = -9.1 eV, E₂ = -4.2 eV, and E3 = -2.8 eV. The dashed line is not an energy level, but rather just shows the location of zero energy. n = 00 0 eV n = 3 E 3 n = 2 E 2 n = 1 E₁ (a) How much energy does it take to ionize, or remove, an electron that is in the ground state of this atom? 9.1 eV (b) There is one transition in the emission spectrum that will not be observed in the absorption transition. What is the (positive) energy of this transition? 7 X ev (c) What is the wavelength of the photon emitted in this transition? 1970 x nm (d) Now consider the absorption spectrum. What is the energy of the transition in the absorption spectrum that has the shortest wavelength? HINT: Identify the transitions that occur in the absorption spectrum and then think about how energy and wavelength are related. X ev 4.9 (e) What is the wavelength of the photon that is absorbed in this transition? 2533 x nm (f) What…arrow_forward
- X-ray is produced by bombarding a tungsten target with high energy electrons accelerated by 8.8 kV of voltage. Use σ = 1 for the electron transition down to K shell (n = 1) and σ = 7.4 for the electron transition down to L shell (n = 2) for characteristic X-ray. What is the kinetic energy of electrons accelerated by 8.8 kV of high voltage? Assume that the initial speed of electrons emitted from a filament by thermionic emission is zero. What is the minimum wavelength of electromagnetic waves produced by bremsstrahlung?arrow_forwardA hydrogen atom in an n = 2, l = 1, ml = -1 state emits a photon when it decays to an n = 1, l = 0, ml = 0 ground state. In the absence of an external magnetic field, what is the wavelength of this photon?arrow_forward4. a. An electron in a hydrogen atom falls from an initial energy level of n-5 to a final level of n - 2. Find the energy, frequency, and wavelength of the photon that will be [For hydrogen: E-13.6 eV/n²] emitted for this sequence. b. A photon of energy 2.794 eV is absorbed by a hydrogen atom, causing its electron to be released with a kinetic energy of 2.250 eV. In what energy level was the electron? c. Find the wavelength of the matter wave associated with a proton moving at a speed of 350 m/s.arrow_forward
- A hydrogen atom is in state N= 3, where N = 1 is the lowest energy state. What is K+U in electron volts for this atomic hydrogen energy state? E3 = eV The hydrogen atom makes a transition to state N = 2. What is K+U in electron volts for this lower atomic hydrogen energy state? E₂ = eV What is the energy in electron volts of the photon emitted in the transition from level N = 3 to N = 2? Ephoton = eVarrow_forwardA hydrogen atom emits a photon when its electron shifts from a higher energy level to a lower one. Suppose that one atom emits a photon whose wavelength equals 656 nm. If the energy levels are defined by the quantum number n (where n = 1, 2, 3, ), what were the initial and final values of n? ni=. ? nf=. ?arrow_forwardWhen a hydrogen atom undergoes a transition from the n = 2 to the n = 1 level, a photon with l = 122 nm is emitted. If the atom is modeled as an electron in a one-dimensional box, what is the width of the box in order for the n = 2 to n = 1 transition to correspond to emission of a photon of this energy?arrow_forward
- A ground-state H-atom (n = 1) first absorbs a photon with a wavelength of 95.0 nm and then emits a photon of 434 nm. What is the final state (n-value) for the electron?arrow_forwardA photon is absorbed by a hydrogen atom in the ground state. If the electron is boosted from to the n = 6, what was the energy of the absorbed photon? Give your answer in electron volts (eV).arrow_forwardA photon is emitted when an electron in a three- dimensional cubical box of side length 8.00 * 10-11 m makes a transition from the nX = 2, nY = 2, nZ = 1 state to the nX = 1, nY = 1, nZ = 1 state. What is the wavelength of this photon?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill