Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 36, Problem 18E
To determine
The possible minimum energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The electron in a certain hydrogen atom has an angular momentum of 2.583×10−34 J.s. What is the largest possible magnitude for the
z-component of the angular momentum of this electron?
For accuracy, use h=6.626×10−34 J⋅s. find Number Units
The orbital angular momentum of a hydrogen atom is 2.572 × 10-34 J•s.
What is the atom’s minimum possible energy?
If the angular momentum of an electron atom of
hydrogen is equal to 34- ^ 10 × 3.15 j.s, in what orbit
is this electron located? And what is his energy.
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Similar questions
- For an electron in a hydrogen atom in the n=2 state, compute: (a) the angular momentum; (b) the kinetic energy; (c) the potential energy; and (d) the total energy.arrow_forwardA hydrogen atom is in its second excited state (n = 3). Using the Bohr theory of the atom, calculate the following. (a) the radius of the orbit nm(b) the linear momentum of the electron kg · m/s(c) the angular momentum of the electron J · s(d) the kinetic energy eV(e) the potential energy eV(f) the total energy eVarrow_forwardA hydrogen atom is in its third excited state (n = 4). Using the Bohr theory of the atom, calculate the following. (a) the radius of the orbit nm(b) the linear momentum of the electron kg · m/s(c) the angular momentum of the electron J · s(d) the kinetic energy eV(e) the potential energy eV(f) the total energy eVarrow_forward
- The energy of a hydrogen atom is 12.09 eV above its groundstate energy. As a multiple of h, what is the largest angular momentum that this atom could have?arrow_forwardThe magnitude of the orbital angular momentum in an excited state of hydrogen is 6.84 × 10-34 J ·s and the z com- ponent is 2.11 x 10-3ª J ·s. What are all the possible values of n, l, and mẹ for this state?arrow_forwardA hydrogen atom is in its first excited state (n = 2). Using the Bohr theory of the atom, calculate the following. (a) the radius of the orbit nm (b) the linear momentum of the electron kg. m/s (c) the angular momentum of the electron J.s (d) the kinetic energy eV (e) the potential energy eVarrow_forward
- A hydrogen atom is in its third excited state (n = 4). Using the Bohr theory of the atom, calculate the following. (a) the radius of the orbit nm (b) the linear momentum of the electron kg • m/s (c) the angular momentum of the electron J.S (d) the kinetic energy eV (e) the potential energy eV (f) the total energy eVarrow_forwardFor a hydrogen atom in its ground state, use the Bohr model to compute the angular momentum of the electron.arrow_forwardIn a hydrogen atom, the electron is at a distance of 4.768 Å from the nucleus. The angular momentum of the electron is......arrow_forward
- A particular Bohr orbit in a hydrogen atom has a total energy of-0.85 eV. What are (a) the kinetic energy of the electron in thisorbit and (b) the electric potential energy of the system?arrow_forwardA hydrogen atom is in its second excited state (n = 3). Calculate the following for the Bohr model. (a) the radius of the orbit nm (b) the linear momentum of the electron kg · m/s (c) the angular momentum of the electron J.s (d) the kinetic energy of the electron ev (e) the potential energy of the system ev (f) the total energy of the system evarrow_forwardWhat is the maximum possible angular momentum L of a hydrogen atom if its energy is -0.544 eV? Your answer should be written as a multiple of ℏ.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning