Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 73P
(a)
To determine
To show: The classical
(b)
To determine
To show: Equation 36.13 gives the value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Show that the quantization of angular momentum L= nh follows from Bohr’s Assumption D that the mean value K of the kinetic energy of the electronnucleus system is given by K = nhforb/2. Assume a circular orbit.
(a) The current i due to a charge q moving in a circle with frequency frev is qfrev .
(a) Find the current due to the electron in the first Bohr orbit.
(b) The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr orbit in units Am2 . This magnetic moment is called a Bohr magneton.
(a) The current i due to a charge q moving in a circle with frequency frev is q frev. Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr orbit in units A-m2. This magnetic moment is called a Bohr magneton.
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For a hydrogen atom in an excited state with principal quantum number n, show that the smallest angle that the orbital angular momentum vector can make with respect to the z-axis is =cos1( n1n) .arrow_forward(a) The current i due to a charge q moving in a circle with frequency frev is qfrev · Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr orbit in units Am2 . This magnetic moment is called a Bohr magneton.arrow_forwardA magnetic field is applied to a freely floating uniform iron sphere with radius R = 2.00 mm. The sphere initially had no net magnetic moment, but the field aligns 12% of the magnetic moments of the atoms (that is, 12% of the magnetic moments of the loosely bound electrons in the sphere, with one such electron per atom). The magnetic moment of those aligned electrons is the sphere’s intrinsic magnetic moment .What is the sphere’s resulting angular speed v?arrow_forward
- (a) What is the magnitude of the angular momentum for an l = 1 electron? (b) Calculate the magnitude of the electron’s spin angular momentum. (c) What is the ratio of these angular momenta?arrow_forwardH-atom. The wave function of one of the electrons in the 2p orbital is given by (ignoring spin) 1 r (-2) Cos cos 2,1,0 (r, 0,0) = . 2πT · do |32πα P(r)dr = Where ao is the Bohr radius. In the Bohr model, the radius of the electron orbit is given by ™-2 n²ao = 4ao. The probability that the electron can be found at some radius between r and r + dr is given by r ao TU $ST -exp sin 0 d0 | Yn.l.m² (r, ¢, 0)|²r² dr = What is the most probable distance of the electron from the nucleus? Clue: Most probable r is located at a local maxima of the probability density P(r). Thus, solve for r in a,P(r) = 0arrow_forwardIn sodium, one of the two yellow lines has a wavelength of 589.76 nm and is the transition from the 2P₁ state to the 2s, 1/2 1/2 state. If a sodium atom is placed in a magnetic field due to the anomalous Zeeman effect, it can be shown that the energy splitting may be determined by V = μBB extgm,. If the magnitude of the external magnetic field is 2.45 T, determine the difference in wavelength (in m) between the shortest and longest wavelength between these two states. 123 Tutorial marrow_forward
- For an electron in the atomic state n = 3,1 = 1, and me = 1, what is the magnitude of the orbital h angular momentum vector, in units of 2TT Lz,max h 2πT |Z| = If a magnetic field is applied to the atom, what is the magnitude of the maximum component of the angular momentum vector in the direction of B? Give your answer as a multiple of : h 2π X X : h 2πarrow_forwardSuppose that a hydrogen atom in its ground state moves 80 cm through and perpendicular to a vertical magnetic field that has a magnetic field gradient dB/dz = 1.6 * 102 T/m. (a) What is the magnitude of force exerted by the field gradient on the atom due to the magnetic moment of the atom’s electron, which we take to be 1 Bohr magneton? (b) What is the vertical displacement of the atom in the 80 cm of travel if its speed is 1.2 * 105 m/s?arrow_forwardSuppose a hydrogen atom in its ground state moves 110 cm through and perpendicular to a vertical magnetic field that has a magnetic field gradient dB/dz = 2.1 x 102 T/m. (a) What is the magnitude of the force exerted by the field gradient on the atom due to the magnetic moment of the atom's electron, which we take to be 1 Bohr magneton? (b) What is the vertical displacement of the atom in the 110 cm of travel if its speed is 1.9 × 10° m/s? (a) Number 1.9467 Units (b) Number 1.78 Unitsarrow_forward
- A sodium atom (Z = 11) contains 11 protons in its nucleus. Strictly speaking, the Bohr model does not apply, because the neutral atom contains 11 electrons instead of a single electron. However, we can apply the model to the outermost electron as an approximation, provided that we use an effective value Zeffective rather than 11 for the number of protons in the nucleus. (a) The ionization energy for the outermost electron in a sodium atom is 5.1 eV. Use the Bohr model with Z = Zeffective to calculate a value for Zeffective. (b) Using Z = 11, determine the corresponding value for the radius r of the outermost Bohr orbit. (c) Using the value calculated for Zeffective in part (a), determine the corresponding radius r of the outermost Bohr orbit. (a) Zeffective = Number i 2.04 (b) _r= (c)_r= Number i 5.29E-11 Number i 2.12E-11 Units No units Units m Units m ♥arrow_forwardIf an electron in an atom has orbital angular momentum with values limited by 3, how many values of (a) Lorb,z and (b) morb,z can the electron have? In terms of h,m, and e, what is the greatest allowed magnitude for (c) Lorb,z and (d) morb,z? (e) What is the greatest allowed magnitude for the z component of the electron’s net angular momentum (orbital plus spin)? (f) How many values (signs included) are allowed for the z component of its net angular momentum?arrow_forwardLook up the values of the quantities in aB = h2 / 4π2 me kqe2 ,and verify that the Bohr radius aB is 0.529 x 10-10 m .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning