Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 74P
To determine
The maximum possible efficiency of the laser.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A. Electrons are ejected from a metal surface with speeds ranging up to 4.72E+5m/s when light with a wavelength of lambda = 650nm is used. What is the work function (in eV) of the surface?
B. What is the cutoff frequency for this surface?
When light of wavelength 310 nm is incident on a metal surface, electrons are ejected with a kinetic energy of 1.0 eV.
a. What is the work function (binding energy) of this metal (in eV)?
b. What is the cutoff wavelength of light (in nm) that can eject electrons? Will photons with wavelength 544 nm eject electrons? Explain your reasoning.
c. Determine the wavelength of light (in nm) that should be used to double the kinetic energy of the electrons ejected from this surface.
An isolated atom of certain element emits light of wavelength 529 nm when the atom falls from its sixth excited state into its third excited state. The atom emits a photon of wavelength 422 nm when it drops from its seventh excited state into its third excited state. frind wavelength of the light radiated when the atom makes a transition from its seventh to its sixth excited state, in um.
a. 21
b. 2.09
c. 2086.34
d 0.0209
e. 208. 63
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the minimum value of 1 for a subshell that has 11 electrons in it? (b) If this subshell is in the n=5 shell, what is the spectroscopic notation for this atom?arrow_forward(a) Calculate the velocity of an electron that has a wavelength of 1.00 m. (b) Through what voltage must the electron be accelerated to have this velocity?arrow_forwardA physicist is watching a 15-kg orangutan at a zoo swing lazily in a tire at the end of a rope. He (the physicist) notices that each oscillation takes 3.00 s and hypothesizes that the energy is quantized. (a) What is the difference in energy in joules between allowed oscillator states? (b) What is the value of n for a state where the energy is 5.00 J? (c) Can the quantization be observed?arrow_forward
- A 400-nm laser beam is projected onto a calcium electrode. The power of the laser beam is 2.00 mW and the work function of calcium is 2.31 eV. (a) How many photoelectrons per second are ejected? (b) What net power is carried away by photoelectrons?arrow_forwardAtoms can be ionized by thermal collisions, such as at the high temperatures found in the solar corona. One such ion is C+5, a carbon atom with only a single electron. (a) By what factor are the energies of its hydrogen-like levels greater than those of hydrogen? (b) What is the wavelength of the first line in this ion's Paschen series? (c) What type of EM radiation is this?arrow_forwardZinc has a work function of 4.3 eV.a. What is the longest wavelength of light that will release an electron from a zinc surface?b. A 4.7 eV photon strikes the surface and an electron is emitted. What is the maximum possible speed of the electron?arrow_forward
- Electrons can have a wavelength of 0.00388 nm (wave-particle duality), blue light can have a wavelength of 450 nm (the minimum wavelength in the visible spectrum), while red light can have a wavelength of 750 nm (the maximum wavelength in the visible spectrum). With the aid of a "microscope," which of them would produce the most detailed view of very tiny objects, e.g. red blood cells? A. Red light onl B. Blue light only C. Electrons only D. Both red and blue light E. Both blue light and electronsarrow_forward4arrow_forwardH7arrow_forward
- Ultraviolet light is incident upon a metal, ejecting photoelectrons. The wavelength of the light is 185 nm and the maximum kinetic energy of the ejected electrons is 4.25 eV. a. What is the binding energy in eV of this metal? b. If visible light with a wavelength of 550 nm is incident upon the same metal, will photoelectrons be ejected? Briefly explain why or why not?arrow_forwardIf a metal has a work function 4.3 eV what is the minimum frequency for photo-emission?A. 3.5 x 108 HzB. 3.0 x 1010 HzC. 10.0 x 108 HzD. 1.04 x 1015 HzE. 1.0 Hzarrow_forwardA photoelectric-effect experiment finds a stopping potential of 1.93 V when light of 200 nm wavelength is used to illuminate the cathode.a. From what metal is the cathode made?b. What is the stopping potential if the intensity of the light is doubled?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax